Skip to main content
Log in

Superacid L-Sites on the Surface of Ternary ZrO2-SiO2-Al2O3 and ZrO2-SiO2-SnO2 Oxides

  • Published:
Theoretical and Experimental Chemistry Aims and scope

Superacid (H0 ≥ –14.52) ternary Zr35Si53Al12 and Zr21Si67Sn11 oxides have been studied by X-ray photoelectron spectroscopy. The high-energy shifts of Zr3d levels indicate the electron density shift from zirconium to silicon atoms, which is facilitated by the presence of tetrahedrally coordinated Al3+ and Sn4+ ions in Zr4+ environment. Models of the superacid L-sites that include coordinatively unsaturated zirconium ions are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

References

  1. K. Tanabe and W. F. Holderich, Appl. Catal. A., 181, 399-434 (1999).

    Article  CAS  Google Scholar 

  2. J. N. Armor, Appl. Catal. A., 222, 407-426 (2001).

    Article  CAS  Google Scholar 

  3. G. Busca, Chem. Rev., 107, 5366-5410 (2007).

    Article  CAS  Google Scholar 

  4. T. Muroi, N. Nojiri, and T. Deguchi, Appl. Catal. A., 389, 27-45 (2010).

    Article  CAS  Google Scholar 

  5. K. Tanabe, M. Misono, Y. Ono, and H. Hattori, New Solid Acids and Bases: Their Catalytic Properties, Elsevier, Amsterdam (1989).

    Google Scholar 

  6. A. Corma, Chem. Rev., 95, 559-614 (1995).

    Article  CAS  Google Scholar 

  7. S. Prudius, O. Inshina, K. Khomenko, et al., Norwegian J. Dev. Int. Sci., 16, 13-19 (2018).

    Google Scholar 

  8. O. I. Inshina, A. M. Korduban, G. M. Telbiz, and V. V. Brei, Adsorb. Sci. Technol., 35, 439-447 (2017).

  9. S. V. Prudius, N. L. Hes, V. V. Trachevskiy, et al., Chem. Chem. Technol., 15, 336-342 (2021).

    Article  CAS  Google Scholar 

  10. K. I. Tanaka and A. Ozaki, J. Catal., 8, 1-7 (1967).

    Article  CAS  Google Scholar 

  11. S. Rajagopal, D. Nataraj, O. Y. Khyzhun, et al., CrystEngComm., 13, 2358-2368 (2011).

    Article  CAS  Google Scholar 

  12. J. F. Moulder, W. F. Stickle, P. E. Sobol, and K. D. Bomben, Handbook of X-ray Photoelectron Spectroscopy, J. Chastain (ed.), Perkin-Elmer Corp., Minnesota (1995).

  13. D. Briggs and M. P. Seach, Practical Surface Analysis by Auger and X-ray Photoelectron Spectroscopy, Chichester, John Wiley & Sons Ltd. (1983).

    Google Scholar 

  14. T. L. Barr and M. A. Lishka, J. Appl. Collab. Syst., 108, 3178-3186 (1986).

    CAS  Google Scholar 

  15. M. J. Guittet, J. P. Crocombette, and M. Gautier-Soyer, Phys. Rev. B., 63, 125117 (2001).

    Article  Google Scholar 

  16. V. S. Anitha, S. S. Lekshmy, and K. Joy, J. Alloys Compd., 675, 331-340 (2016).

    Article  CAS  Google Scholar 

  17. F. Iacona, R. Kelly, and G. Marietta, J. Vac. Sci. Technol. A., 17, 2771-2778 (1999).

    Article  CAS  Google Scholar 

  18. B. Tang, W. Dai, G. Wu, et al., ACS Catal., 4, 2801-2810 (2014).

    Article  CAS  Google Scholar 

  19. C. Hitmen, D. Imbert, and J. M. Siffre, Appl. Surf. Sci., 78, 219-231 (1994).

    Article  Google Scholar 

  20. H. An, S. Kweon. D. C. Kang, et al., Korean J. Chem. Eng., 38, 1161-1169 (2021).

    Article  CAS  Google Scholar 

  21. M. M. Zaman and S. M. Antao, Minerals, 10, 947 (2020).

    Article  CAS  Google Scholar 

  22. J. D. Michael. M. J. Rushton. I. Ipatova, et al., RSC Adv., 9, 16320-16327 (2019).

    Article  Google Scholar 

  23. Y. Han and J. Zhu, Top. Catal., 56, 1525-1541 (2013).

    Article  CAS  Google Scholar 

  24. T. Hanada and N. Soga, J. Am. Ceram. Soc., 65, 84-86 (1982).

    Article  Google Scholar 

  25. M. Batzill and U. Diebold, Prog. Surf. Sci., 79, 47-154 (2005).

    Article  CAS  Google Scholar 

  26. P. Manjunathan, V. S.Marakatti, P. Chandra, et al., Catal. Today, 309, 61-76 (2018).

    Article  CAS  Google Scholar 

  27. T. Setoyama, M. Kobayashi, Y. Kabata, et al., Catal. Today, 73, 29-37 (2002).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Brei.

Additional information

Translated from Teoretychna ta Eksperymentalna Khimiya, Vol. 58, No. 4, pp. 243-247, July-August, 2022.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Inshyna, O.I., Prudius, S.V. & Brei, V.V. Superacid L-Sites on the Surface of Ternary ZrO2-SiO2-Al2O3 and ZrO2-SiO2-SnO2 Oxides. Theor Exp Chem 58, 269–275 (2022). https://doi.org/10.1007/s11237-022-09744-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11237-022-09744-3

Keywords

Navigation