Skip to main content
Log in

Nanosized Pd/SnO2 Materials for Semiconductor Hydrogen Sensors

  • Published:
Theoretical and Experimental Chemistry Aims and scope

To create highly sensitive semiconductor hydrogen sensors, nanosized tin dioxides with particle sizes of 5-6 and 10-11 nm have been obtained by the sol-gel method using various precursors, as well as Pd-doped materials on their base. The maximum sensitivity to the hydrogen microconcentrations has been found for the sensors based on the nanosized ex-oxalate SnO2 containing 0.24% palladium. High sensitivity of the obtained semiconductor sensors is explained by the significant influence of surface processes on their electrical resistance due to the smallest sizes of the SnO2 particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

References

  1. G. Korotcenkov, S. D. Han, and J. R. Stetter, Chem. Rev., 109, 1402-1433 (2009).

    Article  CAS  Google Scholar 

  2. G. Chen, J. Yu, and P. T. Lai, Microelectron. Reliab., 52, 1660-1664 (2012).

    Article  CAS  Google Scholar 

  3. H. Jiang, M. Huang, Y. Yu et al., Sensors, 18, 94-102 (2018).

    Article  Google Scholar 

  4. H. Yamazaki, Y. Hayashi, K. Masunishi, et al., J. Micromech. Microeng., 28, 094001 (2018).

    Article  Google Scholar 

  5. J. T. Gurusamy, G. Putrio, R. D. Jeffery, et al., Sens. Actuators B, 281, 335-342 (2019).

    Article  CAS  Google Scholar 

  6. Y. Zhang, H. Peng, X. Qian, et al., Sens. Actuators B, 244, 393-416 (2017).

    Article  CAS  Google Scholar 

  7. X. She, Y. Shen, J. Wang, et al., Light Sci. Appl., 8, 4-1-4-10 (2019).

  8. S. Barami, V. Ghafarinia, Sens. Actuators B, 293, 31-40 (2019).

    Article  CAS  Google Scholar 

  9. Z. Cai, E. Goo, and S. Park, J. Mater. Res. Technol., 15, 1716-1731 (2021).

    Article  CAS  Google Scholar 

  10. Z. Cai, S. Park, Sens. Actuators B, 322, 128651 (2020).

  11. K. Hu, F. Wang, H. Liu, et al., Ceram. Int., 46, 1609-1614 (2020).

    Article  CAS  Google Scholar 

  12. A. Marikutsa, M. Rumyantseva, A. Gaskov, et al., Inorg. Mater., 51, 1329-1347 (2015).

    Article  CAS  Google Scholar 

  13. G. Fedorenko, L. Oleksenko, N. Maksymovych, and I. Vasylenko, J. Mater. Sci., 55, 16612-16624 (2020).

    Article  CAS  Google Scholar 

  14. G. Fedorenko, L. Oleksenko, N. Maksymovych, and I. Matushko, Russ. J. Phys. Chem., 12, 2259-2262 (2015).

    Article  Google Scholar 

  15. G. Fedorenko, L. Oleksenko, and N. Maksymovych, Adv. Mater. Sci. Eng., 2019, 5190235 (2019).

    Article  Google Scholar 

  16. C. Xu, J. Tamaki, N. Miura, and N. Yamazoe, J. Mater. Sci., 27, 963-971 (1992).

    Article  CAS  Google Scholar 

  17. C. Hammond, The basics of crystallography and diffraction, Oxford univ. press, Oxford (2009).

    Google Scholar 

  18. H. Borchert, E. Shevchenko, A. Robert, et al., Langmuir, 21, 1931-1936 (2005).

    Article  CAS  Google Scholar 

  19. I. Vasylenko, S. Kolotilov, I. Kotenko, et al., J. Magn. Magn. Mater., 324, 595-601 (2012).

    Article  CAS  Google Scholar 

  20. N. Yamazoe and K. Shimanoe, Sens. Actuators B, 138, 100-107 (2009).

    Article  CAS  Google Scholar 

  21. E. Rounder, Chem. Soc. Rev., 35, 583-592 (2006).

    Article  Google Scholar 

  22. K. Chatterjee, S. Chatterjee, A. Banerjee et al., Mater. Chem. Phys., 81, 33-38 (2003).

    Article  CAS  Google Scholar 

  23. K. E. Geckeler and E. Rosenberg, Functional Nanomaterials, American Scientific Publishers, Valencia (2006).

    Google Scholar 

  24. L. Oleksenko, G. Fedorenko, and N. Maksymovych, Res. Chem. Intermed., 45, 4101-4111 (2019).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGEMENTS

The work was performed with the support of the Ministry of Education and Science of Ukraine (a grant for the prospective development of the scientific direction “Mathematical Sciences and Natural Sciences Kyiv National University).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. P. Maksymovych.

Additional information

Translated from Teoretychna ta Eksperymentalna Khimiya, Vol. 58, No. 4, pp. 225-230, July-August, 2022.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maksymovych, N.P., Fedorenko, G.V. & Oleksenko, L.P. Nanosized Pd/SnO2 Materials for Semiconductor Hydrogen Sensors. Theor Exp Chem 58, 247–253 (2022). https://doi.org/10.1007/s11237-022-09741-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11237-022-09741-6

Key words

Navigation