Skip to main content

Advertisement

Log in

Photocatalytic Evolution of Hydrogen from Alcohol–Aqueous Solutions using Nanocrystalline Carbon Nitride Modified with Magnesium Chloride Under the Visible Light Irradiation

  • Published:
Theoretical and Experimental Chemistry Aims and scope

Samples of nanocrystalline graphite-like carbon nitride (CGCN) modified with magnesium chloride have been obtained. The synthesized Mg-CGCN samples have been characterized by UV and IR spectroscopies, X-ray diffraction, energy dispersive X-ray analysis, and scanning electron microscopy. It is found that Mg-CGCN exhibits 60% higher photocatalytic activity in the reaction of hydrogen evolution from aqueous ethanol solutions under visible light than undoped CGCN. This may be related to a change in electrophysical characteristics (potentials of allowed bands) resulting from the incorporation of Mg2+ ions into the CGCN structure, improved dissociation of photogenerated charges, and inhibition of their recombination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

References

  1. X. Wang, K. Maeda, A. Thomas, et al., Nat. Mater., 8, No. 1, 76-80 (2009), https://doi.org/10.1038/nmat2317.

    Article  CAS  PubMed  Google Scholar 

  2. X. Wang, K. Maeda, X. Chen, et al., J. Am. Chem Soc.,131, No. 5, 1680-1681 (2009), https://doi.org/10.1021/ja809307s.

    Article  CAS  PubMed  Google Scholar 

  3. K. Maeda, X. Wang,Y. Nishihara, et al., J. Phys. Chem. C.,113, No. 12, 4940-4947 (2009), https://doi.org/10.1021/jp809119m.

    Article  CAS  Google Scholar 

  4. X. Chen, Y. S. Jun, K. Takanabe, et al., Chem. Mater.,21, No. 18, 4093-4095 (2009), https://doi.org/10.1021/cm902130z.

    Article  CAS  Google Scholar 

  5. J. Wen, J. Xie, X. Chen, and X. Li, Appl. Surf. Sci. B., 391, 72-123 (2017), https://doi.org/10.1016/j.apsusc.2016.07.030.

    Article  CAS  Google Scholar 

  6. O. L. Stroyuk, A. E. Raevskaya, and S. Ya. Kuchmy, Theor. Exp. Chem., 54, No. 1, 1-35 (2018), https://doi.org/10.1007/s11237-018-9541-2.

    Article  CAS  Google Scholar 

  7. O. L. Stroyuk, A. E. Raevskaya, and S. Ya. Kuchmy, Theor. Exp. Chem., 55, No. 3, 147-172 (2019), https://doi.org/10.1007/s11237-019-09607-4.

    Article  CAS  Google Scholar 

  8. J. Wang, P. Kumar, and H. Zhao, Green Chem., 23, No. 19, 7435-7457 (2021).

    Article  CAS  Google Scholar 

  9. G. Grodziuk, N. Shcherban, V. Shvalagin, et al., Int. J. Hydrog. Energy, 42, No. 38, 24108-24116 (2017), https://doi.org/10.1016/j.ijhydene.2017.07.238.

    Article  CAS  Google Scholar 

  10. G. Ya. Grodzyuk, V. V. Shvalagin, N. S. Andryushina, et al., Theor. Exp. Chem., 54, No. 2, 99-106 (2018), https://doi.org/10.1007/s11237-018-9552-z.

    Article  CAS  Google Scholar 

  11. L. Lin, H. Ou, Y. Zhang, and X. Wang, ACS Catal., 6, No. 6, 3921-3931 (2016), https://doi.org/10.1021/acscatal.6b00922.

    Article  CAS  Google Scholar 

  12. H. Ou, L. Lin, Y. Zheng, et al., Adv. Mater., 29, No. 22, 1700008 (2017), .

    Article  Google Scholar 

  13. L. Lin, W. Ren, C. Wang, et al., Appl. Catal. B., 231, 234-241 (2018), 10.10167j.apcatb.2018.03.009.

  14. N. Andriushyna, V. Shvalagin, A. Korzhak, et al., Appl. Surf. Sci., 475, 348-354 (2019), https://doi.org/10.1016/j.apsusc.2018.12.287.

    Article  CAS  Google Scholar 

  15. V. V. Shvalagin, G. V. Korzhak, S. Ya. Kuchmiy, et al., J. Photochem. Photobiol. A., 390, 112295 (2020), https://doi.org/10.1016/j.jphotochem.2019.112295.

    Article  CAS  Google Scholar 

  16. J.-Y. Tang, W.-G. Zhou, R.-T. Guo, et al., Catal. Commun., 107, 92-95 (2018), 10.10167j.catcom.2018.01.006.

  17. S. B. Vuggili, S. K. Khanth, K. Kadiya, et al., J. Environ. Chem. Eng., 7, No. 6, 103440 (2019), https://doi.org/10.1016/j.jece.2019.103440.

    Article  CAS  Google Scholar 

  18. X. Dong, S. Zhang, H. Wu, et al., RSC Adv., 9, No. 49, 28894-28901 (2019), https://doi.org/10.1039/C9RA04606B.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. W. Yan, L. Li Yan, C. Jing, et al., Appl. Catal. B., 244, 475-485 (2019), https://doi.org/10.1016/j.apcatb.2018.11.069.

  20. D. Long, W. Diao, X. Rao, and Y. Zhang, ACS Appl. Energy Mater., 3, No. 9, 9278-9284 (2020), https://doi.org/10.1021/acsaem.0c01619.

    Article  CAS  Google Scholar 

  21. S. K. Sahoo, I. F. Teixeira, A. Naik, et al., J. Phys. Chem. C.,125, No. 25, 13749-13758 (2021), https://doi.org/10.1021/acs.jpcc.1c03947.

    Article  CAS  Google Scholar 

  22. V. Shvalagin, S. Kuchmiy, M. Skoryk, et al., Mater. Sci. Eng. B., 271, 115304 (2021), https://doi.org/10.1016/j.mseb.2021.115304.

    Article  CAS  Google Scholar 

  23. D. C. Bradley and M. N. Gitlitz, J. Chem. Soc., 980-984 (1969), https://doi.org/10.1039/j19690000980.

  24. J. Yu, K. Wang, W. Xiao, et al., Phys. Chem. Chem. Phys., 16, No. 23, 11462-11469 (2014), https://doi.org/10.1039/c4cp00133h.

    Article  CAS  Google Scholar 

  25. A. Savateev, S. Pronkin, J. D. Epping, et al., ChemCatChem., 9, No. 1, 167-174 (2017), https://doi.org/10.1016/j.jssc.2013.02.016.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Ya. Kuchmiy.

Additional information

Translated from Teoretychna ta Eksperymentalna Khimiya, Vol. 58, No. 3, pp. 179-184, May-June, 2022.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grodzyuk, G.Y., Koryakina, K.V., Shvalagin, V.V. et al. Photocatalytic Evolution of Hydrogen from Alcohol–Aqueous Solutions using Nanocrystalline Carbon Nitride Modified with Magnesium Chloride Under the Visible Light Irradiation. Theor Exp Chem 58, 198–204 (2022). https://doi.org/10.1007/s11237-022-09736-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11237-022-09736-3

Keywords

Navigation