Skip to main content
Log in

Influence of Chemical Structure of Molecules on Blood–Brain Barrier Permeability on the Pampa Model

  • Published:
Theoretical and Experimental Chemistry Aims and scope

2D PLS QSPR models for analyzing substance permeability across the blood-brain barrier (BBB) using PAMPA (artificial membrane permeability assay) are developed. Physico-chemical and structural interpretation of the constructed models is performed. It is shown that nitrogen-containing fragments and a significant part of oxygen-containing functional groups negatively affect the permeability of compounds across BBB. At the same time, aromatic fragments and halogens positively affect permeability. It is found that electrostatic factors have the highest effect on BBB permeability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. D. J. Begley, M. W. Bradbury, and J. Kreuter (eds.), The Blood-Brain Barrier and Drug Delivery to the CNS, New York, Basel, Marcel Dekker, Inc., (2000), p. 247.

    Google Scholar 

  2. M. Adenot and R. J. Lahana, J. Chem. Inf. Comput. Sci., 44, No. 1, 239-248 (2004).

    Article  CAS  Google Scholar 

  3. J. Mensch, J. Oyarzabal, C. Mackie, and P. Augustijns, J. Pharm. Sci., 98, No. 12, 4449-4466 (2009).

    Article  Google Scholar 

  4. H. Sun, K. Nguyen, E. Kerns, et al., Bioorg. Med. Chem., 25, 1266-1276 (2017).

    Article  CAS  Google Scholar 

  5. B. T. Hawkins and T. P. Davis, Pharmacol. Rev., 57, No. 2, 173-185 (2005).

    Article  CAS  Google Scholar 

  6. J. Bicker, G. Alves, A. Fortuna, et al., Int. J. Pharm., 102-111 (2016).

  7. A. Avdeef, Absorption and Drug Development: Solubility, Permeability, and Charge State, John Wiley & Sons, Inc., 308 (2012), DOI: https://doi.org/10.1002/9781118286067.

  8. L. Di, E. H. Kerns, K. Fan, et al., Eur. J. Med. Chem., 38, 223-232 (2003), DOI: https://doi.org/10.1016/s0223-5234(03)00012-6.

    Article  CAS  PubMed  Google Scholar 

  9. A. Avdeef, S. Bendels, L. Di, et al., J. Pharm. Sci., 96, No. 11, 2893-2909 (2007).

    Article  CAS  Google Scholar 

  10. J. Mensch, A. Melis, C. Mackie, et al., Eur. J. Pharm. Biopharm., 74, 495-502 (2010), DOI: https://doi.org/10.1016/j.ejpb.2010.01.003.

    Article  CAS  PubMed  Google Scholar 

  11. L. Grumetto, G. Russo, and F. Barbato, Eur. J. Pharm. Sci., 65, 139-146 (2014), DOI: https://doi.org/10.1016/j.ejps.2014.09.015.

    Article  CAS  PubMed  Google Scholar 

  12. P.-A. Billat, E. Roger, S. Faure, and F. Lagarce, Drug Discov. Today, 22, 761-775 (2017).

    Article  CAS  Google Scholar 

  13. O. Tsinman, K. Tsinman, N. Sun, and A. Avdeef, Pharm.Res., 28, No. 2, 337-363 (2011), DOI: https://doi.org/10.1007/s11095-010-0280-x.

    Article  CAS  PubMed  Google Scholar 

  14. K.-F. Liew, N. A. Hanapi, K.-L. Chan, et al., J. Pharm. Sci., 1-9 (2016), DOI: https://doi.org/10.1016/j.xphs.2016.10.006.

  15. C.-T. Chi, M.-H. Lee, C.-F. Weng, and M. K. Leong, Int. J. Mol. Sci., 20, 3170 (2019), DOI: https://doi.org/10.3390/ijms20133170.

    Article  CAS  PubMed Central  Google Scholar 

  16. V. Kuz’min, A. Artemenko, L. Ognichenko, et al., Struct. Chem., 1365-1392 (2021).

  17. V. E. Kuz’min, A. G. Artemenko, E. N. Muratov, et al., Recent Advances in QSAR Studies,. T. Puzyn, J. Leszczynski, and M. T. D. Cronin (eds.), London, Springer, 127-176 (2010).

  18. A. Avdeef, ADMET & DMPK, 8, 29-77 (2020).

    Article  Google Scholar 

  19. S. Rannar, F. Lindgren, P. Geladi, and S. Wold, J. Chemometrics, 8, 111-125 (1994).

    Article  Google Scholar 

  20. R. E. Carhart, D. H. Smith, and R. Venkataraghavan, J. Chem. Inf. Comput. Sci., 25, 64-73 (1985), DOI: https://doi.org/10.1021/ci00046a002.

    Article  CAS  Google Scholar 

  21. K. Hasegawa, Y. Miyashita, and K. Funatsu, J. Chem. Inf. Comput. Sci., 37, 306-310 (1997), https://doi.org/https://doi.org/10.1021/ci960047x.

  22. P. Gramatica, QSAR & Comb. Sci., 26, 694-701 (2007), https://doi.org/https://doi.org/10.1002/qsar.200610151.

  23. M. Meloun, J. Militku, and M. Hill, Analyst, 127, 433-450 (2002).

    Article  CAS  Google Scholar 

  24. E. V. Radchenko, A. S. Dyabina, and V. A. Palyulin, Molecules, (2020), DOI: https://doi.org/10.3390/molecules25245901.

Download references

Acknowledgement

The authors are grateful to the Academician of the National Academy of Medical Sciences of Ukraine M. Ya. Golovenko and Dr. Sci. Biol. V. B. Larionov for useful consultations during the discussion of the results of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. P. Kosinska.

Additional information

Translated from Teoretychna ta Eksperymentalna Khimiya, Vol. 58, No. 1, pp. 25-29, January-February, 2022.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kosinska, G.P., Ognichenko, L.M., Shyrykalova, A.O. et al. Influence of Chemical Structure of Molecules on Blood–Brain Barrier Permeability on the Pampa Model. Theor Exp Chem 58, 29–33 (2022). https://doi.org/10.1007/s11237-022-09718-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11237-022-09718-5

Keywords

Navigation