Skip to main content
Log in

Processes of Propene Production from Ethanol: Catalysts, Reaction Pathways and Thermodynamic Aspects: A Review

  • Published:
Theoretical and Experimental Chemistry Aims and scope

Reaction pathways of catalytic conversion of ethanol into propene are considered. It is shown that the highest propene yield is achieved over catalysts that direct the process in the following reaction pathway: ethanol → acetaldehyde → acetone → propene. A new promising propene production method that involves a two-stage process is discussed; ethanol is converted into acetone in the first stage while acetone is converted into propene in the second stage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

References

  1. X. Li, A. Kant, Y. He, et al., Catal. Today, 276, 62-77 (2016).

    Article  CAS  Google Scholar 

  2. V. Zacharopoulou and A. A. Lemonidou, Catalysts, 8, 2-19 (2018).

    Article  CAS  Google Scholar 

  3. R. Huang, V. Fung, Z. Wu, and D. Jiang, Catal. Today, 350, 19-24 (2020).

    Article  CAS  Google Scholar 

  4. J. Becerra, M. Figueredo, and M. Cobo, J. Environ. Chem. Eng., 5, 1554-1564 (2017).

    Article  CAS  Google Scholar 

  5. H. T. Abdulrazzaq and T. J. Schwartz, in: Ethanol: Science and Engineering, A. Basile, A. Iulianelli, F. Dalena, and T. Nejat Veziroglu (eds.), Elsevier (2018), pp. 1-24.

  6. F. Dalena, A. Senatore, A. Iulianelli, et al., in: Ethanol: Science and Engineering, A. Basile, A. Iulianelli, F. Dalena, and T. Nejat Veziroglu (eds.), Elsevier (2018), pp. 25-59.

  7. A. Kuut, K. Ritslaid, K. Kuut, et al., in: Ethanol: Science and Engineering, A. Basile, A. Iulianelli, F. Dalena, and T. Nejat Veziroglu (eds.), Elsevier (2018), pp. 61-101.

  8. M. Kohler, in: Ethanol: Science and Engineering, A. Basile, A. Iulianelli, F. Dalena, and T. Nejat Veziroglu (eds.), Elsevier (2018), pp. 505-521.

  9. J. Pang, M. Zheng, and T. Zhang, Adv. Catal., 64, 89-191 (2019).

    CAS  Google Scholar 

  10. J. Sun and Y. Wang, ACS Catal., 4, 1078-1090 (2014).

    Article  CAS  Google Scholar 

  11. V. F. Tret’yakov, Y. I. Makarfi, K. V. Tret’yakov, et al., Catal. Ind., 2, 402-420 (2010).

    Article  Google Scholar 

  12. Z. X. Song, A. Takahashi, N. Mimura, and T. Fujitani, Catal. Lett., 131, 364-369 (2009).

    Article  CAS  Google Scholar 

  13. Y. Furumoto, Y. Harada, N. Tsunoji, et al., Appl. Catal., 399, 262-267 (2011).

    Article  CAS  Google Scholar 

  14. D. Goto, Y. Harada, Y. Furumoto, et al., Appl. Catal. A, 383, 89-95 (2010).

    Article  CAS  Google Scholar 

  15. A. G. Gayubo, A. M. Tarrio, A. T. Aguayo, et al., Ind. Eng. Chem. Res., 40, 3467-3474 (2001).

    Article  CAS  Google Scholar 

  16. Y. Xue, Y. Niu, H. Zheng, et al., J. Fuel Chem. Technol., 49, 1111-1121 (2021).

    Article  Google Scholar 

  17. T. Meng, D. S. Mao, Q. S. Guo, and G. Z. Lu, Catal. Commun., 21, 52-57 (2012).

    Article  CAS  Google Scholar 

  18. Y. Takamitsu, K. Yamamoto, S. Yoshida, et al., J. Porous Mater., 21, 433-440 (2014).

    Article  CAS  Google Scholar 

  19. F. F. Madeira, N. S. Gnep, P. Magnoux, et al., Appl. Catal. A, 367, 39-46 (2009).

    Article  CAS  Google Scholar 

  20. Z. X. Song, A. Takahashi, I. Nakamura, and T. Fujitani, Appl. Catal. A., 384, 201-205 (2010).

    Article  CAS  Google Scholar 

  21. J. Lu, Y. Liu, and N. Li, J. Nat. Gas Chem., 20, 423-427 (2011).

    Article  CAS  Google Scholar 

  22. M. Inaba, K. Murata, I. Takahara, and K. Inoue, J. Chem. Technol. Biotechnol., 86, 95-104 (2011).

    Article  CAS  Google Scholar 

  23. K. Inoue, K. Okabe, M. Inaba, et al., React. Kinet. Mech. Catal., 101, 477-489 (2010).

    Article  CAS  Google Scholar 

  24. K. Ramesh, L. M. Hui, Y.-F. Han, and A. Borgna, Catal.Commun., 10, 567-571 (2009).

    Article  CAS  Google Scholar 

  25. K. Ramesh, C. Jie, Y.-F. Han, and A. Borgna, Ind. Eng. Chem. Res., 49, 4080-4090 (2010).

    Article  CAS  Google Scholar 

  26. A. Takahashi, W. Xia, I. Nakamura, et al., Appl. Catal. A, 423-424, 162-167 (2012).

  27. Z. Song, W. Liu, C. Chen, et al., React. Kinet. Mech. Catal., 109, 221-231 (2013).

    Article  CAS  Google Scholar 

  28. A. G. Gayubo, A. Alonso, B. Valle, et al., Fuel, 89, 3365-3372 (2010).

    Article  CAS  Google Scholar 

  29. A. G. Gayubo, A. Alonso, B. Valle, et al., Chem. Eng. J., 167, 262-277 (2011).

    Article  CAS  Google Scholar 

  30. C. Duan, X. Zhang, R. Zhou, et al., Catal. Lett., 141, 1821-1827 (2011).

    Article  CAS  Google Scholar 

  31. C. Duan, X. Zhang, R. Zhou, et al., Fuel Process. Technol., 108, 31-40 (2013).

    Article  CAS  Google Scholar 

  32. N. Tsunoji, Y. Furumoto, Y. Ide, et al., J. Japan Pet. Inst., 56, 22-31 (2013).

    Article  CAS  Google Scholar 

  33. K. Inoue, K. Okabe, M. Inaba, et al., React. Kinet. Mech. Catal., 101, 227-235 (2010).

    Article  CAS  Google Scholar 

  34. M. Iwamoto, Catal. Today, 242, 243-248 (2015).

    Article  CAS  Google Scholar 

  35. T. Haishi, K. Kasai, and M. Iwamoto, Chem. Lett., 40, 614-616 (2011).

    Article  CAS  Google Scholar 

  36. M. Iwamoto and Y. Kosugi, J. Phys. Chem. Lett. C, 111, 13-15 (2007).

    Article  CAS  Google Scholar 

  37. M. Iwamoto, Catal. Surv. Asia, 12, 28-37 (2008).

    CAS  Google Scholar 

  38. A. T. Aguayo, A. G. Gayubo, A. Atutxa, et al., Ind. Eng. Chem. Res., 41, 4216-4224 (2002).

    Article  CAS  Google Scholar 

  39. M. Inaba, K. Murata, M. Saito, and I. Takahara, Green Chem., 9, 638-646 (2007).

    Article  CAS  Google Scholar 

  40. M. Hartmann, A. Poppl, and L. J. Kevan, Phys. Chem., 100, 9906-9910 (1996).

    Article  CAS  Google Scholar 

  41. Y. Tanaka, N. Sawamura, and M. Iwamoto, Tetrahedron Lett., 39, 9457-9460 (1998).

    Article  CAS  Google Scholar 

  42. M. Iwamoto, Molecules, 16, 7844-7863 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. M. Iwamoto, K. Kasai, and T. Haishi, Chem. Sus. Chem., 4, 1055-1058 (2011).

    Article  CAS  Google Scholar 

  44. K. Ikeda, Y. Kawamura, T. Yamamoto, and M. Iwamoto, Catal. Commun., 9, 106-110 (2008).

    Article  CAS  Google Scholar 

  45. Y. Kato, Y. Nishioka, T. Wada, et al., Int. J. Modem Phys. B., 24, 3253-3256 (2010).

    Article  CAS  Google Scholar 

  46. Y. Kato, Y. Nishioka, T. Wada, et al., 20th Symp. Chem. Eng., Korea, Abstract (Dec. 2007).

  47. S. Sugiyama, Y. Kato, T. Wada, et al., Top. Catal., 53, 550-554 (2010).

    Article  CAS  Google Scholar 

  48. K. Kasai, T. Haishi, and M. Iwamoto, Shokubai, 49, 126-128 (2007).

    Google Scholar 

  49. R. D. Stull, E. F. Westrum, and G. C. Sinke, The chemical thermodynamics of organic compounds, John Wiley, New York (1969).

    Google Scholar 

  50. Y. I. Pyatnytsky and P. E. Strizhak, Calculating Equilibrium and Simulating Kinetics of Heterogeneous Catalytic Reactions, https://www.free-ebooks.net/ebook/Calculating-Equilibrium-and-Simulating-Kinetics-of-Heterogeneous-Catalytic-Reactions (2018).

  51. K. Larmier, C. Chizallet, N. Cadran, et al., ACS Catal., 5, 4423-4437 (2015).

    Article  CAS  Google Scholar 

  52. L. M. Senchilo, L. Yu. Dolgykh, Y. I. Pyatnitsky, and P. E. Strizhak, Theor. Exp. Chem., 52, 175-183 (2016).

    Article  CAS  Google Scholar 

  53. T. Lehmann and A. Seidel-Morgenstern, Chem. Eng. J., 19, 7214-7220 (2013).

    Google Scholar 

  54. F. Xue, C. Miao, Y. Yue, et al., Green Chem., 19, 5582-5590 (2017).

    Article  CAS  Google Scholar 

  55. M. Iwamoto, S. Mizuno, and M. Tanaka, Chem. Eur. J., 19, 7214-7220 (2013).

    Article  CAS  PubMed  Google Scholar 

  56. M. Iwamoto, M. Tanaka, S. Hirakawa, et al., ACS Catal., 4, 3463-3469 (2014).

    Article  CAS  Google Scholar 

  57. S. Mizuno, M. Kurosawa, M. Tanaka, and M. Iwamoto, Chem. Lett., 41, 892-894 (2012).

    Article  CAS  Google Scholar 

  58. F. Hayashi and M. Iwamoto, ACS Catal., 3, 14-17 (2013).

    Article  CAS  Google Scholar 

  59. F. Hayashi, M. Tanaka, D. Lin, and M. Iwamoto, J. Catal., 316, 112-120 (2014).

    Article  CAS  Google Scholar 

  60. W. Xia, F. Wang, X. Mu, et al., Catal. Commun., 90, 10-13 (2017).

    Article  CAS  Google Scholar 

  61. F. Wang, W. Xia, X. Mu, et al., Appl. Surf. Sci., 439, 405-412 (2018).

    Article  CAS  Google Scholar 

  62. C. R. V. Matheus, L. H. Chagas, G. Gonzalez, et al., ACS Catal., 8, 7667-7678 (2018).

    Article  CAS  Google Scholar 

  63. C. R. V. Matheus and E. F. S. Aguiar, Catal. Commun., 145, 106096 (2020).

    Article  CAS  Google Scholar 

  64. A. F. F. Lima, P. C. Zonetti, C. P. Rodrigues, and L. G. Appel, Catal. Today, 279, 252-259 (2017).

    Article  CAS  Google Scholar 

  65. Y. I. Pyatnytsky, L. Y. Dolgykh, L. M. Senchilo, et al., Theor. Exp. Chem., 55, 50-55 (2019).

    Article  CAS  Google Scholar 

  66. Y. Pyatnytsky, L. Dolgykh, and L. Senchilo, Chem. Papers, 75, 5773-5779 (2021).

    Article  CAS  Google Scholar 

  67. R. S. Murthy, P. Patnaik, P. Sidheswaran, and M. Jayamani, J. Catal., 109, 298-302 (1988).

    Article  CAS  Google Scholar 

  68. T. Nakajima, T. Yamaguchi, and K. Tanabe, J. Chem. Soc. Chem. Commun., 394-395 (1987).

  69. T. Nakajima, K. Tanabe, T. Yamaguchi, et al., Appl. Catal., 52, 237-248 (1989).

    CAS  Google Scholar 

  70. T. Nakajima, H. Nameta, S. Mishima, et al., J. Mater. Chem., 4, 853-858 (1994).

    Article  CAS  Google Scholar 

  71. T. Nishiguchi, T. Matsumoto, H. Kanai, et al., Appl. Catal. A., 279, 273-277 (2005).

    Article  CAS  Google Scholar 

  72. L. Y. Dolgykh, I. L. Stolyarchuk, L.A. Staraya, and Y. I. Pyatnytsky, Theor. Exp. Chem., 54, 349-357 (2018).

    Article  CAS  Google Scholar 

  73. L. Yu. Dolgikh, Y. I. Pyatnytsky, and P. E. Strizhak, in: Bioethanol and Beyond: Advances in Production Process and Future Directions, M. Brienzo (ed.), New York, Nova Sci. (2018), Ch. 14, pp. 381-427.

  74. J. Bussi, S. Parodi, B. Irigaray, and R. Kieffer, Appl. Catal. A., 172, 117-129 (1998).

    Article  CAS  Google Scholar 

  75. T. M. Yurieva, Catal. Today, 51, 457-467 (1999).

    Article  CAS  Google Scholar 

  76. J. Cunningham, G. H. Al-Sayyed, J. Cronin, et al., J. Catal., 102, 160-171 (1986).

    Article  CAS  Google Scholar 

  77. J. Cunningham, G. H. Al-Sayyed, J. Cronin, et al., Appl. Catal., 25, 129-138 (1986).

    Article  CAS  Google Scholar 

  78. T. Ohkubo, K. Fujiwara, T. Fujita, and M. Ishibashi, Olefin Production Process, Patent US 8552239, Publ. 2013.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. I. Pyatnitsky.

Additional information

Translated from Teoretychna ta Eksperymentalna Khimiya, Vol. 58, No. 1, pp. 14-24, January-February, 2022.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pyatnitsky, Y.I., Senchylo, L.M., Dolgikh, L.Y. et al. Processes of Propene Production from Ethanol: Catalysts, Reaction Pathways and Thermodynamic Aspects: A Review. Theor Exp Chem 58, 15–28 (2022). https://doi.org/10.1007/s11237-022-09717-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11237-022-09717-6

Keywords

Navigation