Skip to main content

Influence of Modification of Zn-Mg(Zr)Si Oxide Systems by Sodium and Potassium on their Catalytic Properties in the Process of Obtaining 1,3-Butadiene from Ethanol

The effect of alkali metal ions (Na+ or K+) on the acid–base and catalytic properties of Zn-Mg(Zr)Si oxide systems in the process of obtaining 1,3-butadiene from ethanol was studied. It was found that the modification of Zn-MgSi oxide systems promotes an increase in the 1,3-butadiene selectivity (at temperatures ≥670 K) by reducing the number of formation sites of by-products. In the composition of Zn-ZrSi oxide systems, alkali metal cation additives lead to a decrease in the ethene and diethyl ether selectivity due to a decrease in the content of strong acid sites that are active in the ethanol dehydration reaction.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.

References

  1. R. Dastillung, B. Fischer, M. Jacquin, and R. Huyghe, “Method for the Production of Butadiene from Ethanol in One Low-Water- and Low-Energy-Consumption Reaction Step”, Patent US 20170267604 A1, Publ. 2017.

  2. G. M. Cabello Gonzalez, A. L. Villanueva Perales, M. Campoy, et al., Fuel Process. Technol., 216, 106767 (2021).

    CAS  Article  Google Scholar 

  3. C. E. Cabrera Camacho, B. Alonso-Faricas, A. L. Villanueva Perales, et al., ACS Sustain. Chem. Eng., 8, 10201-10211 (2020).

    CAS  Article  Google Scholar 

  4. G. Pomalaza, P. Arango, M. Capron, and F. Dumeignil, Catal. Sci. Technol., 10, 4860-4911 (2020).

    CAS  Article  Google Scholar 

  5. P. I. Kyriienko, O. V. Larina, S. O. Soloviev, and S. M. Orlyk, Theor. Exp. Chem., 56, 213-242 (2020).

    CAS  Article  Google Scholar 

  6. E. V. Makshina, M. Dusselier, W. Janssens, et al., Chem. Soc. Rev., 43, 7917-7953 (2014).

    CAS  Article  Google Scholar 

  7. R. Ohnishi, T. Akimoto, and K. Tanabe, J. Chem. Soc. Chem. Commun., 70, 1613 (1985).

    Article  Google Scholar 

  8. R. A. L. Baylon, J. Sun, and Y. Wang, Catal. Today, 259, 446-452 (2014).

    Article  Google Scholar 

  9. S. Da Ros, M. D. Jones, D. Mattia, et al., ChemCatChem., 8, 2376-2386 (2016).

    Article  Google Scholar 

  10. P. T. Patil, D. Liu, Y. Liu, et al., Appl. Catal. A, 543, 67-74 (2017).

    CAS  Article  Google Scholar 

  11. A. Klein, K. Keisers, and R. Palkovits, Appl. Catal. A, 514, 192-202 (2016).

    CAS  Article  Google Scholar 

  12. C. Wang and M. Zheng, Green Chem., 21, 1006-1010 (2019).

    CAS  Article  Google Scholar 

  13. I. Bin Samsudin, H. Zhang, S. Jaenicke, and G. -K. Chuah, Chem.-Asian J., 15, 4199-4214 (2020).

    CAS  Article  Google Scholar 

  14. O. V. Larina, P. I. Kyriienko, and S. O. Soloviev, Theor. Exp. Chem., 51, 252-258 (2015).

    CAS  Article  Google Scholar 

  15. V. R. Choudhary, V. H. Rane, and M. Y. Pandit, J. Chem. Technol. Biotechnol., 68, 177-186 (1997).

    CAS  Article  Google Scholar 

  16. E. Finazzi, C. Di Valentin, G. Pacchioni, et al., Chem. Eur. J., 14, 4404-4414 (2008).

    CAS  Article  Google Scholar 

  17. L. H. Chagas, C. R. V. Matheus, P. C. Zonetti, and L. G. Appel, Mol. Catal., 458, 272-279 (2018).

    CAS  Article  Google Scholar 

  18. J. T. Kozlowski and R. J. Davis, J. Energy Chem., 22, 58-64 (2013).

    CAS  Article  Google Scholar 

  19. V. V. Ordomsky, V. L. Sushkevich, and I. I. Ivanova, J. Mol. Catal. A, 333, 85-93 (2010).

    CAS  Article  Google Scholar 

  20. M. Zhang, Y. Qin, X. Tan, et al., Catal. Lett., 150, 1462-1470 (2020).

    CAS  Article  Google Scholar 

  21. Y. Xu, Z. Liu, Z. Han, and M. Zhang, RSC Adv., 7, 7140-7149 (2017).

    CAS  Article  Google Scholar 

  22. M. Zhang, X. Tan, T. Zhang, et al., RSC Adv., 8, 34069-34077 (2018).

    CAS  Article  Google Scholar 

  23. O. V. Larina, N. D. Shcherban, P. I. Kyriienko, et al., ACS Sustain. Chem. Eng., 8, 16600-16611 (2020).

    CAS  Article  Google Scholar 

  24. G. M. Cabello Gonzalez, P. Concepcionb, A. L. Villanueva Peralesa, et al., Fuel Process. Technol., 193, 263-272 (2019).

    CAS  Article  Google Scholar 

  25. P. I. Kyriienko, O. V. Larina, D. Y. Balakin, et al., Appl. Catal. A, 616, 118081 (2021).

    CAS  Article  Google Scholar 

Download references

Acknowledgement

The research was performed with the partial financial support of research programs of the NAS of Ukraine “Support of priority areas of research”, KPKVK 6541230 (0120U101212), “Fundamental problems of creating new substances and materials of chemical production” (0119U101562), and project of research works of young scientists of the National Academy of Sciences of Ukraine (0121U111813).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Larina.

Additional information

Translated from Teoretychna ta Eksperymentalna Khimiya, Vol. 57, No. 6, pp. 375-381, November-December, 2021.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Larina, O.V., Kyriienko, P.I., Morozov, O.V. et al. Influence of Modification of Zn-Mg(Zr)Si Oxide Systems by Sodium and Potassium on their Catalytic Properties in the Process of Obtaining 1,3-Butadiene from Ethanol. Theor Exp Chem 57, 443–450 (2022). https://doi.org/10.1007/s11237-022-09714-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11237-022-09714-9

Keywords

  • ethanol conversion
  • 1,3-butadiene
  • ZnO/MgO(ZrO2)-SiO2
  • sodium
  • potassium
  • acid–base characteristics