Skip to main content

Advertisement

Log in

Influence of Vanadium Doping on the Activity of Nanocomposite Electrocatalysts Based on Molybdenum Carbide and Reduced Graphene Oxide in the Process of Hydrogen Evolution from Water

  • Published:
Theoretical and Experimental Chemistry Aims and scope

It has been found that pyrolysis of hybrid precursors containing polypyrrole, H4PVMo11O40, and reduced graphene oxide (rGO) contributes to the production of nanocomposites based on V-doped Mo2C and N,P-doped rGO, which are promising electrocatalysts for hydrogen evolution reaction (HER). It has been shown that vanadium doping increases the activity of electrocatalysts in HER (both in acidic and alkaline electrolytes) when compared to the analog obtained by unsubstituted H3PMo12O40. In particular, it is manifested in a significant reduction of hydrogen evolution overpotential, anodic displacement of a process onset potential, and reduction of a Tafel slope dependence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. M. Wang, Z. Wang, X. Gong, et al., Renew. Sustain. Energy Rev., 29, 573-588 (2014).

    Article  CAS  Google Scholar 

  2. J. A. Turner, Science, 305, 972-974 (2004).

    Article  CAS  Google Scholar 

  3. M. S. Dresselhaus and I. L. Thomas, Nature, 414, 332-337 (2001).

    Article  CAS  Google Scholar 

  4. M. Carmo, D. L. Fritz, J. Mergel, and D. Stolten, Int. J. Hydrog. Energy, 38, 4901-4934 (2013).

    Article  CAS  Google Scholar 

  5. W. Sheng, H. A. Gasteiger, and Y. Shao-Horn, J. Electrochem. Soc., 157, B1529 (2010).

    Article  CAS  Google Scholar 

  6. M. Shao, Q. Chang, J. P. Dodelet, and R. Chenitz, Chem. Rev., 116, 3594-3657 (2016).

    Article  CAS  Google Scholar 

  7. J. Guo, J. Wang, Z. Wu, et al., J. Mater. Chem. A, 5, 4879-4885 (2017).

    Article  CAS  Google Scholar 

  8. F.-X. Ma, H. B. Wu, B. Y. Xia, et al., Angew. Chem., 127, 15615-15619 (2015).

    Article  Google Scholar 

  9. L. Ji, J. Wang, L. Guo, et al., J. Mater. Chem. A, 5, 5178-5186 (2017).

    Article  CAS  Google Scholar 

  10. J. Q. Chi, W. K. Gao, J. H. Lin, et al., J. Colloid Interface Sci., 513, 151-160 (2018).

    Article  CAS  Google Scholar 

  11. M. Miao, T. He, and B. Y. Xia, Chem. Eur. J., 23, 10947-10961 (2017).

    Article  CAS  Google Scholar 

  12. J. D. Benck, T. R. Hellstern, J. Kibsgaard, et al., ACS Catal., 4, 3957-3971 (2014).

    Article  CAS  Google Scholar 

  13. L. Zhang, L. Sun, Y. Huang, et al., J. Mater. Sci., 52, 13561-13571 (2017).

    Article  CAS  Google Scholar 

  14. D. H. Youn, S. Han, J. Y. Kim, et al., ACS Nano, 8, 5164-5173 (2014).

    Article  CAS  Google Scholar 

  15. X. Zhang, F. Zhou, W. Pan, et al., Adv. Funct. Mater., 28, 1804600 (2018).

    Article  Google Scholar 

  16. H. Yan, Y. Jiao, A. Wu, et al., Chem. Commun., 52, 9530-9533 (2016).

    Article  CAS  Google Scholar 

  17. J. S. Li, Y. Wang, C. H. Liu, et al., Nat. Commun., 7, 1-8 (2016).

    Google Scholar 

  18. W. Zhou, J. Jia, J. Lu, et al., Nano Energy, 28, 29-43 (2016).

    Article  CAS  Google Scholar 

  19. J. Guo, K. Zhang, Y. Sun, et al., Inorg. Chem. Front., 6, 443-450 (2019).

    Article  CAS  Google Scholar 

  20. L. Liardet and X. Hu, ACS Catal., 8, 644-650 (2018).

    Article  CAS  Google Scholar 

  21. K. N. Dinh, X. Sun, Z. Dai, et al., Nano Energy, 54, 82-90 (2018).

    Article  CAS  Google Scholar 

  22. J. Guo, K. Zhang, Y. Sun, et al., Inorg. Chem. Front., 5, 2092-2099 (2018).

    Article  CAS  Google Scholar 

  23. L. Wen, J. Yu, C. Xing, et al., Nanoscale, 11, 4198-4203 (2019).

    Article  CAS  Google Scholar 

  24. J. Bao, Z. Wang, J. Xie, et al., Chem. Commun., 55, 3521-3524 (2019).

    Article  CAS  Google Scholar 

  25. S. Chandrasekaran, P. Zhang, F. Peng, et al., J. Mater. Chem. A, 7, 6161-6172 (2019).

    Article  CAS  Google Scholar 

  26. A. Jiang, B. Zhang, Z. Li, et al., Chem. Asian J., 13, 1438-1446 (2018).

    Article  CAS  Google Scholar 

  27. C. Zhang, S. Wu, S. Luo, et al, New J. Chem., 44, 9736-9742 (2020).

    Article  CAS  Google Scholar 

  28. Y. Y. Chen, Y. Zhang, W. J. Jiang, et al., ACS Nano, 10, 8851-8860 (2016).

    Article  CAS  Google Scholar 

  29. C. Du, H. Huang, Y. Wu, et al., Nanoscale, 8, 16251-16258 (2016).

    Article  CAS  Google Scholar 

  30. N. I. Kovtyukhova, P. J. Ollivier, B. R. Martin, et al., Chem. Mater., 11, 771-778 (1999).

    Article  CAS  Google Scholar 

  31. F. Kern and G. Emig, Appl. Catal. A, 150, 14-151 (1997).

    Article  Google Scholar 

  32. L. Q. Xu, Y. L. Liu, K. G. Neoh, et al., Macromol. Rapid Commun., 32, 684-688 (2011).

    Article  CAS  Google Scholar 

  33. Y. I. Kurys, D. O. Mazur, V. G. Koshechko, and V. D. Pokhodenko, Electrocatalysis, 12, 469-477 (2021).

    Article  CAS  Google Scholar 

  34. I. K. Song and M. A. Barteau, J. Mol. Catal. A, 212, 229-236 (2004).

    Article  CAS  Google Scholar 

  35. T. Shinagawa, A. T. Garcia-Esparza, and K. Takanabe, Sci. Rep., 5, 1-21 (2015).

    Article  Google Scholar 

Download references

Acknowledgement

The work was performed with the partial financial support of the target comprehensive research program of the National Academy of Sciences of Ukraine “New functional substances and materials of chemical production” (project No. 1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ya. I. Kurys.

Additional information

Translated from Teoretychna ta Eksperymentalna Khimiya, Vol. 57, No. 6, pp. 356-362, November-December, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mazur, D.O., Kurys, Y.I., Koshechko, V.G. et al. Influence of Vanadium Doping on the Activity of Nanocomposite Electrocatalysts Based on Molybdenum Carbide and Reduced Graphene Oxide in the Process of Hydrogen Evolution from Water. Theor Exp Chem 57, 421–428 (2022). https://doi.org/10.1007/s11237-022-09711-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11237-022-09711-y

Keywords

Navigation