Skip to main content

Influence of Acid–Base Characteristics of Hierarchical Cu/Zr-MTW Zeolites on their Catalytic Properties in 1,3-Butadiene Production from Ethanol–Water Mixtures

The nature of mineralizing agent (HF, NH4F) and the Si/F ratio in the synthesis conditions is found to affect the formation of Zr- and Cu-containing acid sites on the surface of zirconium-containing hierarchical zeolites (Cu/Zr-MTW) modified by copper (2 wt.%). It is shown that in the conversion of 50 and 80 vol.% ethanol the highest yield of 1,3-butadiene is achieved in the presence of Cu/Zr-MTW (NH4F, Si/F = 4) catalyst, which is characterized by higher total surface acidity according to TPD-NH3.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.


  1. E. V. Makshina, M. Dusselier, W. Janssens, et al., Chem. Soc. Rev., 43, 7917-7953 (2014).

    CAS  Article  Google Scholar 

  2. G. Pomalaza, P. Arango Ponton, M. Capron, and F. Dumeignil, Catal. Sci. Technol., 10, 4860-4911 (2020).

  3. P. I. Kyriienko, O. V. Larina, S. O. Soloviev, and S. M. Orlyk, Theor. Exp. Chem., 56, 213-242 (2020).

    CAS  Article  Google Scholar 

  4. I. Bin Samsudin, H. Zhang, S. Jaenicke, and G.-K. Chuah, Chem. Asian J., (2020), doi.10.1002/asia.202001023.

  5. P. I. Kyriienko, O. V. Larina, S. O. Soloviev, et al., ACS Sustain. Chem. Eng., 5, 2075-2083 (2017).

    CAS  Article  Google Scholar 

  6. C. Wang and M. Zheng, Green Chem., 21, 1006-1010 (2019).

    CAS  Article  Google Scholar 

  7. L. Qi, Y. Zhang, M. A. Conrad, et al., J. Am. Chem. Soc., 142, 14674-14687 (2020).

    CAS  Article  Google Scholar 

  8. V. L. Sushkevich and I. I. Ivanova, ChemSusChem., 9, 2216-2225 (2016).

    CAS  Article  Google Scholar 

  9. W. Dai, S. Zhang, Z. Yu, et al., ACS Catal., 7, 3703-3706 (2017).

    CAS  Article  Google Scholar 

  10. R. B. Fischer, M. Jacquin, and R. Huyghe, and R. Dastillung, Method for the Production of Butadiene from Ethanol in One Low-Water- and Low-Energy-Consumption Reaction Step, Patent A1US 20170267604, Publ. 2017.

  11. G. M. Cabello Gonzalez, P. Concepciynb, A. L. Villanueva Peralesa, et al., Fuel Process. Technol., 193, 263-272 (2019).

    CAS  Article  Google Scholar 

  12. J. V. Ochoa, C. Bandinelli, O. Vozniuk, et al., Green Chem., 18, 1653-1663 (2016).

    CAS  Article  Google Scholar 

  13. P. I. Kyriienko, O. V. Larina, D. Y. Balakin, et al., Appl. Catal. A, 616, 118081 (2021).

    CAS  Article  Google Scholar 

  14. O. V. Larina, I. M. Remezovskyi, P. I. Kyriienko, et al., React. Kinet. Mech. Catal., 127, 903-915 (2019).

    CAS  Article  Google Scholar 

  15. P. I. Kyriienko, O. V. Larina, S. Dzwigaj, et al., Theor. Exp. Chem., 55, 266-273 (2019).

    CAS  Article  Google Scholar 

  16. O. V. Larina, N. D. Shcherban, P. I. Kyriienko, et al., ACS Sustain. Chem. Eng., 4, 16600-16611 (2020).

    Article  Google Scholar 

  17. M. M. Kurmach, O. V. Larina, P. I. Kyriienko, et al., ChemistrySelect, 3, 8539-8546 (2018).

    CAS  Article  Google Scholar 

  18. K. Zhang, S. Luo, Z. Liu, et al., Chem. Eur. J., 24, 8133-8140 (2018).

    CAS  Article  Google Scholar 

  19. A. N. Pestryakov, V. P. Petranovskii, A. Kryazhov, et al., Chem. Phys. Lett., 385, 173-176 (2004).

    CAS  Article  Google Scholar 

  20. C. Angelici, M. E. Z. Velthoen, B. M. Weckhuysen, and P. C. A. Bruijnincx, ChemSusChem., 7, 2505-2515 (2014).

    CAS  Article  Google Scholar 

  21. F. Maleki and G. Pacchioni, Top. Catal., 63, 1717-1730 (2020).

    CAS  Article  Google Scholar 

  22. C. Angelici, F. Meirer, A. M. J. van der Eerden, et al., ACS Catal., 5, 6005-6015 (2015).

    CAS  Article  Google Scholar 

  23. O. V. Larina, P. I. Kyriienko, and S. O. Soloviev, Theor. Exp. Chem., 51, 252-258 (2015).

    CAS  Article  Google Scholar 

  24. W. E. Taifan and J. Baltrusaitis, J. Phys. Chem. C., 122, 20894-20906 (2018).

    CAS  Article  Google Scholar 

  25. P. I. Kyriienko, O. V. Larina, D. Y. Balakin, et al., Catal. Lett., (2021), doi:

Download references


This research was carried out with partial financial support of the NASU programs “Support of priority areas of scientific research (KPKVK 6541230)” (0120U101212), “Fundamental problems of creating new substances and materials of chemical production” (0119U101562), and the project of the National Research Foundation of Ukraine “New effective zeolite catalysts for environmentally friendly conversion processes of renewable raw materials into valuable organic compounds” (0120U104981).

Author information

Authors and Affiliations


Corresponding author

Correspondence to O. V. Larina.

Additional information

Translated from Teoretychna ta Eksperymentalna Khimiya, Vol. 57, No. 5, pp. 294-300, September-October, 2021.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Larina, O.V., Kurmach, M.M., Kyriienko, P.I. et al. Influence of Acid–Base Characteristics of Hierarchical Cu/Zr-MTW Zeolites on their Catalytic Properties in 1,3-Butadiene Production from Ethanol–Water Mixtures. Theor Exp Chem 57, 343–350 (2021).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • ethanol–water mixtures
  • 1,3-butadiene
  • Cu/Zr-MTW
  • acid–base characteristics
  • H2O effect