Skip to main content

Energy Storage Technologies Based on Electrochemical Double Layer Capacitors: A Review

Modern design approaches to electric energy storage devices based on nanostructured electrode materials, in particular, electrochemical double layer capacitors (supercapacitors) and their hybrids with Li-ion batteries, are considered. It is shown that hybridization of both positive and negative electrodes and also an electrolyte increases energy density of an electrochemical system, thus, filling the gap between supercapacitors and batteries in terms of specific energy and power, as well as charge rate and the number of charge-discharge cycles.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Notes

  1. Tetrafluoroborate tetraethylammonium is also often used. The electrical conductivity of such electrolytes in acetonitrile reaches 55-60 mS/cm at room temperature.

  2. The results of our tests, as well as tests performed at the JME Laboratory, Cleveland, USA.

References

  1. J. B. Goodenough and K. S. Park, J. Am. Chem. Soc., 135, No. 4, 1167-1176 (2013), doi: https://doi.org/10.1021/ja3091438.

    CAS  Article  PubMed  Google Scholar 

  2. S. A. Kirillov, Theor. Exp. Chem., 55, No. 2, 73-95 (2019), doi: https://doi.org/10.1007/s11237-019-09598-2.

    CAS  Article  Google Scholar 

  3. B. E. Conway, Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications, Kluwer-Plenum Press, New-York (1999).

    Book  Google Scholar 

  4. F. BeMguin and E. Frackowiak, Supercapacitors: Materials, Systems, and Applications, Wiley-VCH, Weinheim (2013).

    Book  Google Scholar 

  5. Yu. A. Maletin, H. G. Strizhakova, C. A. Zelinsky, et al., Ukr Khim. Zh., 83, No. 11, 38-49 (2017).

    CAS  Google Scholar 

  6. M. A. Vorotyntsev and A. A. Kornyshev, Electrostatics of Media with Spatial Dispersion [in Russian], Nauka, Moscow (1993).

  7. J. Chmiola, G. Yushin, Y. Gogotsi, et al., Science, 313, 1760-1763 (2006), doi: https://doi.org/10.1126/science/1132195.

    CAS  Article  PubMed  Google Scholar 

  8. R. De Levie, Adv. Electrochem. Electrochem. Eng., 6, 329-397 (1967).

    Google Scholar 

  9. M. Yaniv and A. Soffer, J. Electrochem. Soc., 123, 506-511 (1976).

    CAS  Article  Google Scholar 

  10. Y. A. Maletin, N. G. Strizhakova, V. Y. Izotov, et al., New Promising Electrochemical Systems for Rechargeable Batteries, Kluwer Acad. Publ., (1996), pp. 363-372.

  11. J. R. Miller, J. Power Sources, 326, 726-735 (2016), doi:https://doi.org/10.1016/j.jpowsour.2016.04.020.

    CAS  Article  Google Scholar 

  12. J. R. Miller and S. M. Butler, Electrochim. Acta., 305, 1-9 (2019), doi:https://doi.org/10.1016/j.electacta.2019.03.021.

    CAS  Article  Google Scholar 

  13. V. Yu. Izotov, D. G. Gromadskyi, and Yu. A. Malyetin, Nauk. Visti NTUU “KPI”, No. 6(62), 114-118 (2008).

  14. X. Liu, X. Dai, G. Wei, et al., Sci. Rep., 7, 45934 (2017), doi: https://doi.org/10.1038/srep45934.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. Y. Maletin, P. Novak, E. Shembel, et al., Appl. Phys. A, 82, No. 4, 653-657 (2006), doi:https://doi.org/10.1007/s00339-005-3416-9.

    CAS  Article  Google Scholar 

  16. F. Beguin, V. Presser, A. Balducci, and E. Frackowiak, Adv. Mater., 26, No. 14, 2219-2251 (2014), doi:https://doi.org/10.1002/adma.201304137.

    CAS  Article  PubMed  Google Scholar 

  17. O. N. Kalugin, V. V. Chaban, V. V. Loskutov, and O. V. Prezhdo, Nano Lett., 8, 2126-2130 (2008), doi: https://doi.org/10.1021/nl072976g.

    CAS  Article  PubMed  Google Scholar 

  18. J. M. Griffin, A. C. Forse, W.-Y. Tsai, et al., Nat. Mater., 14, 812-819 (2015), doi: https://doi.org/10.1038/nmat4318.

    CAS  Article  PubMed  Google Scholar 

  19. Y. Maletin, V. Strelko, N. Stryzhakova, et al., Energ. Environ. Res., 3, No. 2, 156-165 (2013), doi: https://doi.org/10.5539/eer.v3n2p156.

    Article  Google Scholar 

  20. Y. Cohen, L. Avram, and L. Frish, Angew. Chem. Int. Ed., 44, No. 4, 520-554 (2005), doi: https://doi.org/10.1002/anie.200300637.

    CAS  Article  Google Scholar 

  21. R. T. Bonnecaze, N. Mano, B. Nam, and A. Heller, J. Electrochem. Soc., 154, No. 2, F44-F47 (2007), doi: https://doi.org/10.1149/1.2759834.

    CAS  Article  Google Scholar 

  22. Y. Maletin, N. Stryzhakova, S. Zelinskyi, et al., Method for Selecting Nanoporous Carbon Material for Polarizable Electrode, Method of Manufacturing Such Polarizable Electrodes and Method of Manufacturing Electrochemical Double Layer Capacitor, Patent US 9524830, Publ. Dec. 20, 2016.

  23. S. Ghosh and D. Corrigan, Directed Research Report on Performance of Commercial Supercapacitors, AET-8996, Wayne State Univ., Detroit (2014).

  24. P. W. Ruch, D. Cericola, A. Foelske, et al., Electrochim. Acta., 55, No. 7, 2352-2357 (2010), doi: https://doi.org/10.1016/j.electacta.2009.11.098.

    CAS  Article  Google Scholar 

  25. https:kamaka.de/wp-content/uploads/2018/02/FastCAP-2016-Technology-and-Product-Overview-v10.pdf.

  26. N. Stryzhakova, S. Zelinskyi, D. Tretyakov, and Y. Maletin, Electrolyte for an Electrochemical Double Layer Capacitor, and an Electrochemical Double Layer Capacitor Using Such, Patent US 10157713 B2, Publ. 2018.

  27. R. G. Shrestha, S. Maji, L. K. Shrestha, and K. Ariga, Nanomaterials, 10, 639, 1-27 (2020), doi: https://doi.org/10.3390/nano10040639.

    CAS  Article  Google Scholar 

  28. Yu. A. Tarasenko, S. V. Zhuravsky, I. N. Dukhno, et al., Visn. Khark. Nat. Univ., Khim. 19(42), No. 932, 129-138 (2010).

  29. V. Trykhlib, V. Strelko, Yu. Maletin, et al., Nitrogen-Doped Activated Carbon and Method for Nitrogen Doping Activated Carbon, Patent CN 104039698, Publ. 2016.

  30. I. A. Tarkovskaya, Oxidized Coal [in Russian], Naukova Dumka, Kiev (1981).

  31. O. V. Gozhenko, V. Ye. Goba, A.O. Lysenko, et al., Method of Surface Modification of Nanoporous Carbon for Electrodes of Capacitor of Double Electric Layer [in Ukrainian], Patent Ukraine No. 145165, Publ. 2020.

  32. L. F. Aval, M. Ghoranneviss, and G. B. Pour, Heliyon., 4, No. 11 (2018), doi: https://doi.org/10.1016/j.heliyon.2018.e00862.

  33. Z. Lu, R. Raad, F. Safaei, et al., Front. Mater. (2019), doi: https://doi.org/10.3389/fmats.2019.00138.

  34. S. O. Zelinskyi, N. G. Stryzhakova, and Yu. A. Maletin, Nanosyst., Nanomater., Nanotechnol., 18, No. 1, 1-14 (2020), doi: https://doi.org/10.15407/nnn.18.01.001.

    CAS  Article  Google Scholar 

  35. D. Agnihotri, Proc. 20th Intern. Seminar on Double Layer Capacitors and Hybrid Energy Storage Devices, Deerfield Beach, FL, 233-243 (2010).

  36. Y. Zhu, S. Murali, M. D. Stoller, et al., Science, 332, No. 6037, 1537-154 (2011), doi: https://doi.org/10.1126/science.1200770.

    CAS  Article  PubMed  Google Scholar 

  37. W.-Y. Tsai, R. Lin, S. Murali, et al., Nano Energy, 2, No. 3, 403-411 (2013), doi: https://doi.org/10.1016/j.nanoen.2012.11.006.

    CAS  Article  Google Scholar 

  38. J. R. Miller, R. A. Outlaw, and B. C. Holloway, Science, 329, 1637-1639 (2010), doi: https://doi.org/10.1126/science.1194372.

    CAS  Article  PubMed  Google Scholar 

  39. J. R. Miller, R. A. Outlaw, and S. Butler, Proc. 22nd Intern. Seminar on Double Layer Capacitors and Hybrid Energy Storage Devices, Deerfield Beach, FL, 142-151 (2012).

  40. J. Ding, W. Hu, E. Paek, and D. Mitlin, Chem. Rev., 118, No. 14, 6457-6498 (2018), doi: https://doi.org/10.1021/acs.chemrev.8b00116.

    CAS  Article  PubMed  Google Scholar 

  41. S. Fleischmann, J. B. Mitchell, R. Wang, et al., Chem. Rev., 120, No. 14, 6738-6782 (2020), doi: https://doi.org/10.1021/acs.chemrev.0c00170.

    CAS  Article  PubMed  Google Scholar 

  42. S. Trasatti and P. Kurzweil, Platin. Met. Rev., 38, No. 2, 46-56 (1994).

    CAS  Google Scholar 

  43. P. Kurzweil and O. Schmid, Proc. 6th Intern. Seminar on Double Layer Capacitors and Similar Energy Storage Devices, Deerfield Beach, FL (1996).

  44. V. Barsukov and S. Chivikov, Electrochim. Acta, 41, Nos. 11-12, 1773-1779 (1996), doi: https://doi.org/10.1016/0013-4686(95)00494-7.

    CAS  Article  Google Scholar 

  45. V. Z. Barsukov, V. G. Khomenko, S. V. Chivikov, et al., Electrochim. Acta, 46, Nos. 26-27, 4083-4094 (2001), doi: https://doi.org/10.1016/S0013-4686(01)00715-0.

    CAS  Article  Google Scholar 

  46. R. Mercado, V. H. Ebron, and M. Birschbach, Proc. 21st Intern. Seminar on Double Layer Capacitors and Hybrid Energy Storage Devices, Deerfield Beach, FL, 226-239 (2011).

  47. M. R. Lukatskaya, O. Mashtalir, C. E. Ren, et al., Science, 341, No. 6153, 1502-1505 (2013), doi: https://doi.org/10.1126/science.1241488.

    CAS  Article  PubMed  Google Scholar 

  48. A. Al-Temimy, B. Anasori, K. A. Mazzio, et al., J. Phys. Chem. C, 124, No. 9, 5079-5086 (2020), doi: https://doi.org/10.1021/acs.jpcc.9b11766.

    CAS  Article  Google Scholar 

  49. A. Timonov, S. Logvinov, I. Chepurnaya, and V. Kuznetsov, Proc. 15th Intern. Seminar on Double Layer Capacitors and Hybrid Energy Storage Devices, Deerfield Beach, FL, 261-275 (2005).

  50. R. G. Shrestha, S. Maji, L. K. Shrestha, and K. Ariga, Nanomaterials, 10, No. 639, 1-27 (2020), doi: https://doi.org/10.3390/nano10040639.

    CAS  Article  Google Scholar 

  51. B. Liu, H. Shioyama, T. Akita, and Q. Xu, J. Am. Chem. Soc., 130, No. 16, 5390-5391 (2008).

    CAS  Article  Google Scholar 

  52. F. Marpaung, T. Park, M. Kim, et al., Nanomaterials, 9, No. 12, 1796 (2019), doi: https://doi.org/10.3390/nano9121796.

    CAS  Article  PubMed Central  Google Scholar 

  53. https://www.thecompliancecenter.com/lithum-battery-catches-fire/.

  54. D. Cericola and R. Kotz, Electrochim. Acta, 72, 1-17 (2012), doi:https://doi.org/10.1016/j.electacta.2012.03.151.

    CAS  Article  Google Scholar 

  55. A. D. Klementov, I. Varakin, S. Litvinenko, et al., Proc. 7th Intern. Seminar on Double Layer Capacitors and Similar Energy Storage Devices, Deerfield Beach, FL (1997).

  56. A. B. Stepanov, I. N. Varakin, V. V. Menukhov, and A. D. Klementov, Double Layer Capacitor, Patent US 6181546, Publ. 2001.

  57. https://www.greencarcongress.com/2009/05/saft-esma-20090511.html.

  58. https://www.axionpower.com/the-battery/.

  59. E. Buiel, Proc. 20th Intern. Seminar on Double Layer Capacitors and Hybrid Energy Storage Devices, Deerfield Beach, FL, 220-232 (2010).

  60. https://www.jsrmicro.be/emerging-technologies/lithium-ion-capacitor/products/ultimo-lithium-ion-capacitor-prismatic-cell.

  61. S. Tasaki, N. Ando, M. Nagai, et al., Lithium Ion Capacitor, Patent US 7697264, Publ. 2010.

  62. W. J. Cao and J. P. Zheng, Proc. 22nd Intern. Seminar on Double Layer Capacitors and Hybrid Energy Storage Devices, Deerfield Beach, FL, 99-105 (2012).

  63. A. Yahalom, Y. Dahan, V. Prihodko, and M. Averbukh, IEEE Intern. Conf. on the Science of Electrical Engineering, 2016, doi: https://doi.org/10.1109/ICSEE.2016.7806121.

  64. G. G. Amatucci, F. Badway, A. Du Pasquier, and T. Zheng, J. Electrochem. Soc., 148, No. 8, A930 (2001), doi: https://doi.org/10.1149/1.1383553.

    CAS  Article  Google Scholar 

  65. S. Ishimoto, N. Nishina, Y. Minato, and K. Tamamitsu, Proc. 20th Intern. Seminar on Double Layer Capacitors and Hybrid Energy Storage Devices, Deerfield Beach, FL, 161-172 (2010).

  66. K. Naoi, S. Ishimoto, J. Miyamoto, and W. Naoi, Energy Environ. Sci., 5, 9363-9373 (2012), doi: https://doi.org/10.1039/C2EE21675B.

    CAS  Article  Google Scholar 

  67. S. I. Chernukhin, D. O. Tretyakov, D. A. Sidorov, et al., Materials of the X Intern. Conf. “Fundamental Problems of Energy Conversion in Lithium Electrochemical Systems,” Saratov, RF, (2008), pp. 214-215.

  68. S. Chernukhin, D. Tretyakov, and Y. Maletin, Hybrid Electrochemical Energy Storage Device, Patent US 2014/0085773 A1, Publ. 2014.

  69. T. Christen and M. W. Carlen, J. Power Sources, 91, No. 2, 210-216 (2000), doi: https://doi.org/10.1016/S0378-7753(00)00474-2.

    CAS  Article  Google Scholar 

  70. D. V. Ragone, Society of Automotive Engineers. Mid-year Meeting, Detroit, Michigan, May 20-24, SAE International, New York (1968), Art. 680453.

  71. H. Budde-Meiwes, J. Drillkens, et al., P. I. Mech. Eng. D-J. Aut., 227, No. 5, 761-776 (2013), doi: https://doi.org/10.1177/0954407013485567.

    CAS  Article  Google Scholar 

  72. B. E. Paton, A. M. Zhikharev, D. M. Kaleko, and O. O. Slezin, Stud Welding Machine [in Ukrainian], Patent Ukraine No. 100828, Publ. 25.01.2013.

Download references

Acknowledgement

The work was performed with the financial support of the target research program of the NAS of Ukraine “New functional substances and materials of chemical production” (projects 10117U000860, 0119U000619) and the target comprehensive interdisciplinary research program of the NAS of Ukraine on sustainable development and environmental management in global environmental change (projects No. 0115U002963, 0119U000719, 0120U103052).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. A. Maletin.

Additional information

Translated from Teoretychna ta Eksperymentalna Khimiya, Vol. 57, No. 5, pp. 267-278, September-October, 2021.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Maletin, Y.A., Stryzhakova, N.G., Zelinskyi, S.O. et al. Energy Storage Technologies Based on Electrochemical Double Layer Capacitors: A Review. Theor Exp Chem 57, 311–324 (2021). https://doi.org/10.1007/s11237-021-09700-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11237-021-09700-7

Keywords

  • supercapacitors
  • pseudocapacitors
  • “capacitor-battery” hybrids
  • nanostructured electrodes