Skip to main content

Tetracycline Adsorption onto Agave Americana Activated Carbon: Studies of Physicochemical Parameters and Porous Structure

The isotherms of adsorption of tetracycline on activated carbon obtained from Agave Americana fibers were analyzed using the method of statistical physics. It was shown that the adsorption of tetracycline molecules on such coal was a multimolecular process. The share of tetracycline molecules that filled the sites of the first type was 2-5 times higher than the second, because the adsorption energy in the sites of the first type was 0.6-2 kJ/mol lower (at temperatures of 298-323 K, respectively). Using the dispersion equation, it was shown that the tetracycline molecules were adsorbed in the micropores and mesopores of activated carbon with a pore size lower than 2 nm.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.

References

  1. W. Hu, C. Peng, W. Luo, et al., ACS Nano, 4, No. 7, 4317-4323 (2010).

    CAS  Article  Google Scholar 

  2. P. Y. Hong, N. Al-Jassim, M. Ansari, and R. Mackie, Antibiotics, 2, No. 3, 367-399 (2013).

    CAS  Article  Google Scholar 

  3. V. K. Gupta, R. Jain, A. Mittal, et al., J. Colloid Interf. Sci., 309, 464-469 (2007).

    CAS  Article  Google Scholar 

  4. V. K. Gupta, A. Mittal, L. Kurup, and J. Mittal, J. Colloid Interf. Sci., 304, No. 1, 52-57 (2006).

    CAS  Article  Google Scholar 

  5. M. K. Liu, Y. Y. Liu, D. D. Bao, et al., Sci. Rep., 7, 43717 (2017).

    Article  Google Scholar 

  6. R. Kassab, P. Yammine, D. Moussa, and N. Safi, Int. J. Pharm. Sci. Res., 5, No. 6, 2452-2457 (2014).

    Google Scholar 

  7. T. Selmi, A. Sanchez-Sanchez, P. Gadonneix, et al., Ind. Crops Prod., 115, 146-157 (2018).

    CAS  Article  Google Scholar 

  8. A. Elsayed, S. Mahmoud, R. Al-Dadah, et al., Energy Procedia, 61, 2327-2330 (2014).

    CAS  Article  Google Scholar 

  9. L. Aristilde, C. Marichal, J. Miehe-Brendle, et al., Environ. Sci. Technol. 44, 7839-7845 (2010).

  10. M. B. Sweatman and N. Quirke, J. Phys. Chem, 105, No. 7, 1403-1411 (2001).

    CAS  Article  Google Scholar 

  11. B. Diu, C. Guthmann, D. Lederer, and B. Roulet, Physique Statistique, Hermann, Paris (1989).

    Google Scholar 

  12. A. Ben Lamine and Y. Bouazra, Chem. Senses, 22, 67-75 (1997).

    CAS  Article  Google Scholar 

  13. S. Knani, M. Mathlouthi, and A. Ben Lamine, Food Biophys., 2, 183-192 (2007).

    Article  Google Scholar 

  14. F. Aouaini, S. Knani, M. Ben Yahia, et al., Dry. Technol., 32, 1905-1922 (2014).

    CAS  Article  Google Scholar 

  15. L. Sellaoui, H. Guedidi, S. Knani, et al., Fluid Phase Equilib., 387, 103-110 (2015).

    CAS  Article  Google Scholar 

  16. M. Bouzid, N. Bouaziz, Y. Ben Torkia, and A. Ben Lamine, J. Mol. Liq., 283, 674-687 (2019).

    CAS  Article  Google Scholar 

  17. N. Bouaziz, Y. Ben Torkia, F. Aouaini, et al., Sep. Sci. Technol., 54, 2589-2608 (2019).

    CAS  Article  Google Scholar 

  18. G. F. Cerofolini, Thin Solid Films, 23,129-152 (1974).

    CAS  Article  Google Scholar 

  19. B. P. Russell and M. D. Levan, Carbon, 32, 845-855 (1994).

    CAS  Article  Google Scholar 

  20. M. Miyahara, T. Yoshioka, and M. Okazaki, J. Chem. Phys., 106, 8124–8134 (1997).

    CAS  Article  Google Scholar 

  21. Y. Ben Torkia, M. Atrous, M. Bouzid, et al., Chem. Eng. Commun., 207, 445-457 (2020).

    CAS  Article  Google Scholar 

  22. Y Ben Torkia, W. Sghaier, N. Bouaziz, and A. Ben Lamine, J. Environ. Chem. Eng., 104733 (2020).

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Y. Ben Torkia or A. Ben Lamine.

Additional information

Translated from Teoretychna ta Eksperymentalna Khimiya, Vol. 57, No. 4, pp. 253-257, July-August, 2021.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Atrous, M., Torkia, Y.B., Selmi, T. et al. Tetracycline Adsorption onto Agave Americana Activated Carbon: Studies of Physicochemical Parameters and Porous Structure. Theor Exp Chem 57, 297–302 (2021). https://doi.org/10.1007/s11237-021-09698-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11237-021-09698-y

Keywords

  • tetracycline
  • adsorption
  • grand canonical formalism
  • physicochemical parameters
  • pore size distribution