Skip to main content

Structural Characteristics of Graphene Oxide Reduced by Hydrazine and Hydrogen

The composition of functional groups, morphology, defect structure, and surface fractal dimension DS of reduced graphene oxide (RGO) synthesized by reduction of graphene oxide by hydrazine hydrate and heat treatment under hydrogen atmosphere at 400°C are considered. The obtained materials were studied by scanning electron microscopy, infrared and Raman spectroscopy, nitrogen adsorption-desorption, and elemental analysis. It was found that the synthesis method does not affect the fractal dimension of the RGO surface, which is DS = 2.5-2.7 on a scale of 0.4 nm-120 μm.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

References

  1. Y. Zhu, S. Murali, M. D. Stoller, et al., Science, 322, 1537-1541 (2011).

    Article  Google Scholar 

  2. L. Luo, T. Peng, M. Yuan, et al., Sensors, 18, No. 11, 3745 (2018).

    Article  Google Scholar 

  3. R. K. Joshi, S. Alwarappan, M. Yoshimura, et al., Appl. Mater. Today, 1, 1-12 (2015).

    Article  Google Scholar 

  4. S. Navalon, A. Djakshinamoorthy, M. Alvaro, et al., Chem. Rev., 114, No. 12, 6179-6212 (2014).

    CAS  Article  Google Scholar 

  5. R. Ye and J. M. Tour, ACS Nano, 13, No. 10, 10872-10878 (2019).

    CAS  Article  Google Scholar 

  6. S. Pei and H. -M. Cheng, Carbon, 50, No. 9, 3210-3228 (2012).

    CAS  Article  Google Scholar 

  7. F. Banhart, J. Kotakoski, and A. V. Krasheninnikov, ACS Nano, 5, No. 1, 26-41 (2011).

    CAS  Article  Google Scholar 

  8. R. Tarcan, O. Todor-Boer, I. Petrovai, et al., J. Mat. Chem. C, 8, 1198-1224 (2020).

    CAS  Article  Google Scholar 

  9. W. H. Antink, Y. Choi, K.-d. Seong, et al., Adv. Mater. Interfaces, 5, 1701212 (2017).

    Article  Google Scholar 

  10. P. K. Jha, K. Gupta, A. K. Debnath, et al., Carbon, 148, 354-360 (2019).

    CAS  Article  Google Scholar 

  11. K. Gotoh, K. Kawabata, E. Fujii, et al., Carbon, 47, 2112-2142 (2009).

    Article  Google Scholar 

  12. S. Park, J. An, J. R. Potts, et al., Carbon, 49, 3019-3023 (2011).

    CAS  Article  Google Scholar 

  13. V. J. Inglezakis, M. Balsamo, and F. Montagnaro, Processes, 8, No. 6, 689 (2020).

    CAS  Article  Google Scholar 

  14. X. Ma, M. R. Zachariah, and C. D. Zangmeister, Nano Lett., 12, 486-489 (2012).

    CAS  Article  Google Scholar 

  15. D. C. Marcano, D. V. Kosynkin, J. M. Berlin, et al., ACS Nano, 4, No. 8, 4806-4814 (2010).

    CAS  Article  Google Scholar 

  16. A. A. Abakumov, I. B. Bychko, A. S. Nikolenko, and P. E. Strizhak, Theor. Exp. Chem., 54, No. 3, 186-192 (2018).

    CAS  Article  Google Scholar 

  17. L. Stobinski, B. Lesiak, A. Malplepszy, et al., J. Electron Spectrosc. Relat. Phenom., 195, 145-154 (2014).

    CAS  Article  Google Scholar 

  18. S. Brunauer, P. H. Emmet, and E. Teller, J. Am. Chem. Soc., 60, No. 2, 309-319 (1938).

    CAS  Article  Google Scholar 

  19. D. Ongari, P. G. Boyd, S. Barthel, et al., Langmuir, 33, No. 51, 14529-14538 (2017).

    CAS  Article  Google Scholar 

  20. E. P. Barret, L. G. Joyner, and P. P. Halenda, J. Am. Chem. Soc., 73, 373-380 (1951).

    Article  Google Scholar 

  21. J. H. de Boer, B. C. Lippens, B. G. Linsen, et al., J. Colloid Interf. Sci., 21, 405-414 (1966).

    Article  Google Scholar 

  22. P. Tang, N. Y. K. Chew, Hak.-K. Chan, et al., Langmuir, 19, 2632-2638 (2003).

    CAS  Article  Google Scholar 

  23. L. Xianfeng and N. Baisheng, Fuel, 182, 314-322 (2016).

    Article  Google Scholar 

  24. N. Otsu, IEEE Trans. Syst. Man Cybern., 9, N 1, 62-66 (1979).

  25. C. Douketis, Z. Wang, T. L. Haslett, et al., Phys. Rev. B, 51, No. 16, 11022-11031 (1995).

    CAS  Article  Google Scholar 

  26. Z. Xu, B. Zheng, J. Chen, et al., Chem. Mater., 26, No. 23, 6811-6818 (2014).

    CAS  Article  Google Scholar 

  27. S. Eigler, C. Dotzer, and A. Hirsch, Carbon, 50 (2012).

  28. L. G. Cancado, A. Jorio, E. H. Martins Ferreira, et al., Nano Lett., 11, 3190-3196 (2011).

    CAS  Article  Google Scholar 

  29. A. M. Dimiev and J. M. Tour, ACS Nano, 8, No. 3, 3060-3068 (2014).

    CAS  Article  Google Scholar 

  30. M. Thommes, K. Kaneko, A. V. Neimark, et al., Pur. Appl. Chem., 87, Nos. 9-10, 1051-1069 (2015).

    CAS  Article  Google Scholar 

  31. G. Bharath, R. Mahdu, S.-M. Chen, et al., J. Mat. Chem. A, 3, 15529-15539 (2015).

    CAS  Article  Google Scholar 

  32. P. Zheng, T. Liu, Y. Su, et al., J. Alloy Compd., 703, 10-12 (2017).

    CAS  Article  Google Scholar 

  33. D. Yang, A. Velamakanni, G. Bozoklu, et al., Carbon, 50, No. 9, 3210-3228 (2012).

    Article  Google Scholar 

  34. A. Bellutano, H. A. Tash, Y. Cesa, et al., ChemPhysChem., 17, No. 6, 785-801 (2015).

    Google Scholar 

  35. A. Bianco, H. -M. Cheng, T. Enoki, et al, Carbon, 65, 1-6 (2013).

    CAS  Article  Google Scholar 

  36. H. -M. Ju, S. -H. Choi, and S. -H. Huh, J. Kor. Phys. Soc., 57, No. 6, 1649-1652 (2010).

    CAS  Google Scholar 

  37. Z. Movasaghi, S. Rehman, and I. ur Rehman, Appl. Spectrosc. Rev., 43, 134-179 (2008).

  38. J. M. Orza, M. V. Garcua, I. Alkorta, et al., Spectrochim. Acta A, 56, No. 8, 1469-1498.

  39. Y. Ren, T. Zhou, G. Su, et al., Vibr. Sectr., 96, 32-45 (2018).

    CAS  Article  Google Scholar 

  40. O. I. Faniyi, O. Fasakin, B. Olofinjana, et al., SN Appl. Sci., 1, No. 1181 (2019).

  41. C.-M. Chen, Q. Zhang, M.-G. Yang, et al., Carbon, 50, 3572-3584 (2012).

    CAS  Article  Google Scholar 

  42. A. Dimiev, D. V. Kosynkin, L. B. Alemany, et al., J. Am. Chem. Soc., 47, No. 1, 145-152 (2009).

    Google Scholar 

Download references

This work was performed with the financial support of the National Research Fundation of Ukraine (grant No. 2020.02/0050).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. O. Abakumov.

Additional information

Translated from Teoretychna ta Eksperymentalna Khimiya, Vol. 57, No. 4, pp. 247-252, July-August, 2021.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Abakumov, O.O., Bychko, I.B. & Trypolskii, A.I. Structural Characteristics of Graphene Oxide Reduced by Hydrazine and Hydrogen. Theor Exp Chem 57, 289–296 (2021). https://doi.org/10.1007/s11237-021-09697-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11237-021-09697-z

Keywords

  • graphene
  • reduced graphene oxide
  • fractal
  • fractal dimension