Skip to main content
Log in

Photocatalytic Treatment of Synthetic and Real Textile Wastewater Using Zinc Oxide Under the Action of Sunlight

  • Published:
Theoretical and Experimental Chemistry Aims and scope

The influence of the concentration of the catalyst zinc oxide (0.01-0.3 g∙L–1) and the initial concentration of the azo dye Solophenyl Brown AGL (SB AGL, 5-75) on the efficiency of its photocatalytic degradation was studied. Almost complete degradation of the pollutant is achieved at a natural pH and catalyst content of 0.05 g∙L–1. The results of kinetic studies correspond to the Langmuir–Hinshelwood model. The efficiency of predicting the yield of photocatalytic degradation of SB AGL using a three-layer neural network with four input neurons, eight hidden neurons, and one output neuron is shown. The treatment of industrial wastewater containing two textile dye, Solophenyl Brown AGL and Cibacete Brown JNH, using a hybrid process (adsorption/solar photocatalysis) was successfully achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

References

  1. B. Boutra and M. Trari, Water Sci. Technol., 75, 1211-1220 (2017).

    Article  CAS  Google Scholar 

  2. L. Penboon, A. Khrueakham, and S. Sairiam, Water Sci. Technol., 79, 958-966 (2019). https://doi.org/10.2166/wst.2019.023.

    Article  CAS  PubMed  Google Scholar 

  3. B. Boutra, M. Trari, N. Nassrallah, and B. Bellal, Theor. Exp. Chem., 52, 303-309 (2016).

    Article  CAS  Google Scholar 

  4. N. Chekir, D. Tassalit O. Benhabiles, et al., Int. J. Hydrogen Energy (2016). https://doi.org/10.1016/j.ijhydene.2016.11.057.

  5. S. Gita, A. Hussan, and T. G. Choudhury, Environ. Ecol., 35, No. 3C, 2349-2353 (2017).

    Google Scholar 

  6. M. R. Al-Mamun., S. Kader, M. S. Islam, and M. Z. H Khan, J. Environ. Chem. Eng., 7, 103248 (2019). https://doi.org/10.1016/j.jece.2019.103248.

  7. S. Cheriyamundath and S. L. Vavilala, Water Environ. J., 35, 123-132 (2021). https://doi.org/10.1111/wej.12610.

    Article  CAS  Google Scholar 

  8. S. Boumaza, F. Kaouah, D. Hamane, et al., J. Mol. Catal. A, 393, 156-165 (2014).

    Article  CAS  Google Scholar 

  9. I. Vishan, A. Laha, and A. Kalamdhad, Water Sci. Technol., 75, 1071-1083 (2017). https://doi.org/10.2166/wst.2016.590.

    Article  CAS  PubMed  Google Scholar 

  10. H. D. Bouras, Z. Isik, E. B. Arikan, et al., Biochem. Eng. J., 146, 150-159 (2019).

    Article  CAS  Google Scholar 

  11. L. N. Skvortsova, K. A. Bolgaru, M. V. Sherstoboeva, and K. A. Dychko, Russ. J. Phys. Chem., 94, 1248-1253 (2020). https://doi.org/10.1134/S0036024420060242.

    Article  CAS  Google Scholar 

  12. H. Kais, N. Y. Mezenner, M. Trari, and F. Madjene, Russ. J. Phys. Chem., 93, 2834-2841 (2019). https://doi.org/10.1134/S0036024419130119.

    Article  CAS  Google Scholar 

  13. S. Igoud, D. Zeriri, L. Aoudjit, et al., Irrig. Drain., 70, 243-253 (2021). https://doi.org/10.1002/ird.2540.

    Article  Google Scholar 

  14. A. O. Ibhadon and P. Fitzpatrick, Catalysts, 3, 189-218 (2013).

    Article  CAS  Google Scholar 

  15. A. Sebti, F. Souahi, F. Mohellebi, and S. Igoud, Water Sci. Technol., 76, 311-322 (2017). https://doi.org/10.2166/wst.2017.201.

    Article  CAS  PubMed  Google Scholar 

  16. B. Boutra, G. Nuray, O. Mahmut, and T. Mohamed, J. Magn. Magn. Mater., 165994, 1-11 (2020).

    Google Scholar 

  17. A. R. Khataee, M. N. Pons, and O. Zahraa, Water Sci. Technol., 62, 1112-1120 (2010). .

    Article  CAS  Google Scholar 

  18. G. Yashni, A. Al-Gheethi, R. Mohamed, et al., Water Environ. J., 35, 190-217 (2021). https://doi.org/10.1111/wej.12619.

    Article  CAS  Google Scholar 

  19. S. Dutta, A. Ghosh, H. Kabir, and R. Saha, Water Sci. Technol., 74, 698-713 (2016). https://doi.org/10.2166/wst.2016.248.

    Article  CAS  PubMed  Google Scholar 

  20. K. S. Ranjith and R. T. Rajendra Kumar, RSC Adv., 7, 4983-4992 (2017). https://doi.org/10.1039/C6RA27380G.

    Article  CAS  Google Scholar 

  21. H. A. Hamad, W. A. Sadik, and M. M. Abd El-Latif, J. Environ. Sci., 43, 26-39 (2016). https://doi.org/10.1016/j.jes.2015.05.033.

    Article  CAS  Google Scholar 

  22. F. Madjene and N. Yeddou-Mezenner, Sep. Sci. Technol. (2017). https://doi.org/10.1080/01496395.2017.1384014.

  23. T. Bolanca, S. Ukic, I. Peternel, et al., Indian J. Chem. Technol., 21, 21-29 (2014).

    CAS  Google Scholar 

  24. J. Garcia-Alba, J. F. Barcena, C. Ugarteburu, and A. Garcia, Water Res., 150, 283-295 (2019). https://doi.org/10.1016/j.watres.2018.11.063.

    Article  CAS  PubMed  Google Scholar 

  25. D. Krishna and R. P. Sree, Indian Chem. Eng., 55, 200-222 (2013). https://doi.org/10.1080/00194506.2013.829257.

    Article  CAS  Google Scholar 

  26. E. S. Elmolla, M. Chaudhuri. The use of artificial neural network (ANN) for modelling, simulation and prediction of advanced oxidation process performance in recalcitrant wastewater treatment, INTECH Open Access Publisher (2011).

  27. S. M. A. Burney, T. A. Jilani, and C. Ardil, A Comparison of First and Second Order Training Algorithms for Artificial Neural Networks, International Conference on Computational Intelligence, 12-18 (2004).

  28. A. Hassani, A. Khataee, and S. Karaca, J. Mol. Catal. A, 409, 149-161 (2015). https://doi.org/10.1016/j.molcata.2015.08.020.

    Article  CAS  Google Scholar 

  29. J.-M. Herrmann, Top. Catal., 34, 49-65 (2005). https://doi.org/10.1007/s11244-005-3788-2.

    Article  CAS  Google Scholar 

  30. K. M. Reza, A. Kurny, and F. Gulshan, Appl. Water Sci., 7, 1569-1578 (2017). https://doi.org/10.1007/s13201-015-0367-y.

    Article  CAS  Google Scholar 

  31. W. A. L. Venancio, C. Rodrigues-Silva, M. G. Maniero, and J. R. Guimaraes, Water Sci. Technol., 78, 1668-1678 (2018). https://doi.org/10.2166/wst.2018.443.

    Article  CAS  PubMed  Google Scholar 

  32. A. P. Toor, A. Verma, C. K. Jotshi, et al., Dyes Pigm., 68, 53-60 (2006). https://doi.org/10.1016/j.dyepig.2004.12.009.

    Article  CAS  Google Scholar 

  33. D. Rajamanickam and M. Shanthi, Arab. J. Chem., 9, S1858-S1868 (2016). https://doi.org/10.1016/j.arabjc.2012.05.006.

    Article  CAS  Google Scholar 

  34. M. da Motta, R. Pereira, M. Madalena Alves, and L. Pereira, Water Sci. Technol., 70, 1670 (2014). https://doi.org/10.2166/wst.2014.428.

    Article  CAS  PubMed  Google Scholar 

Download references

This work was performed at EVER’s laboratory (Epurationet Valorisation des Eaux de Rejet) and was financially supported by Unite de Developpement des Equipements Solaires, UDES/Centre de Developpement des Energies Renouvelables, CDER.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Boutra.

Additional information

Translated from Teoretychna ta Eksperymentalna Khimiya, Vol. 57. No. 3, pp. 191-198, May-June, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boutra, B., Sebti, A. & Trari, M. Photocatalytic Treatment of Synthetic and Real Textile Wastewater Using Zinc Oxide Under the Action of Sunlight. Theor Exp Chem 57, 226–236 (2021). https://doi.org/10.1007/s11237-021-09692-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11237-021-09692-4

Keywords

Navigation