Skip to main content
Log in

Influence of 3-Glycidoxypropyltriethoxysilane on the Structural Organization of Epoxy-Silica Nanocomposites

  • Published:
Theoretical and Experimental Chemistry Aims and scope

The structural properties of epoxy-silica nanocomposites of anhydride curing synthesized by the sol-gel method were studied using small-angle X-ray scattering and electron microscopy. It was shown that the aggregation processes change significantly during the formation of sols of silica nanoparticles (SP) by using 3-glycidoxypropyltriethoxysilane (GPTES) in the presence and absence of an epoxy oligomer in the system. The fractal aggregate types of each structural level are identified and their sizes are determined by the fractal analysis. It was found that there is a two-level and three-level fractal organization for GPTES-based sols, formed in the presence of an epoxy oligomer, depending on the content of SP. At the same time, aggregates with an average size of 10-11 nm are formed at the first structural level; SP form aggregates with an average size of 65-70 nm at the second level, while the size of the third-level aggregates is more than 250 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

References

  1. M. S. Saveleva, K. Eftekhari, A. Abalymov, et al., Front. Chem., 7, Art. 179 (2019), https://doi.org/10.3389/fchem.2019.00179.

  2. S. H. Mir, L. A. Nagahara, T. Thundat, et al., J. Electrochem. Soc., 165, No. 8, B3137-B3156 (2018), https://doi.org/10.1149/2.0191808jes.

    Article  CAS  Google Scholar 

  3. E. A. Lysenkov, O. V. Stryutskiy, Yu. P. Gomza, and V. V. Klepko, Funct. Mater., 22, No. 1, 40-46 (2015), https://doi.org/10.15407/fm22.01.040.

    Article  CAS  Google Scholar 

  4. V. P. Ananikov, Nanomaterials, 9, No. 9, 1197 (2019), https://doi.org/10.3390/nano9091197.

    Article  CAS  PubMed Central  Google Scholar 

  5. A. Serra, X. Ramis, and X. Fernandez-Francos, Coatings, 6, No.1, 8 (2016), https://doi.org/10.3390/coatings6010008.

    Article  CAS  Google Scholar 

  6. K. Wu, K. Cheng, C. Yang, et al., Open J. Compos. Mater., 5, No. 3, 49-59 (2015), https://doi.org/10.4236/ojcm.2015.53008.

    Article  Google Scholar 

  7. S. V. Zhil’tsova, V. M. Mikhal’chuk, R. I. Lyga, and P. M. Pavlii, Theor. Exp. Chem., 50, No. 3, 191-196 (2014), https://doi.org/10.1007/s11237-014-9365-7.

    Article  CAS  Google Scholar 

  8. F. Lionetto, A. Timo, M. Frigione, and M. Frigione, Polymers, 11, No. 1 (2018), https://doi.org/10.3390/polym11010014.

  9. Z.-Q. Yu, S.-L. You, and H. Baier, Polym. Compos., 33, No. 9, 1516-1524 (2012), https://doi.org/10.1002/pc.22281.

    Article  CAS  Google Scholar 

  10. N. G. Leonova, V. M. Mikhal’chuk, and S. V. Zhyltsova, Theor. Exp. Chem., 54, No. 1, 61-65 (2018), https://doi.org/10.1007/s11237-018-9546-x.

    Article  CAS  Google Scholar 

  11. E. A. Lysenkov, N. G. Leonova, and S. V. Zhiltsova, Theor. Exp. Chem., 55, No. 4, 250-257 (2019), https://doi.org/10.1007/s11237-019-09616-3.

    Article  CAS  Google Scholar 

  12. J. Macan, H. Ivankovic, M. Ivankovic, and H. J. Mencer, Appl. Polym. Sci., 92, No. 1, 498-505 (2004), https://doi.org/10.1002/app.20024.

    Article  CAS  Google Scholar 

  13. C. G. Vonk, J. Appl. Crystallogr., 8, 340-341 (1975), https://doi.org/10.1107/S0021889875010618.

    Article  Google Scholar 

  14. G. Beaucage, J. Appl. Crystallogr., 29, No. 2, 134-146 (1996), https://doi.org/10.1107/S0021889895011605.

    Article  CAS  Google Scholar 

  15. A. Kumar, N. Yadav, M. Bhatt, et al., Res. J. Chem. Sci., 5, No. 12, 98-105 (2015), http://www.isca.in/rjcs/Archives/v5/i12/10.ISCA-RJCS-2015-152.pdf.

  16. A. A. C. Silva, T. I. Gomes, B. D. P. Martins, et al., J. Inorg. Organomet. Polym. Mater., 30, No. 8, 3105-3115 (2020), https://doi.org/10.1007/s10904-020-01468-y.

    Article  CAS  Google Scholar 

  17. O. M. Londono, P. Tancredi, P. Rivas, et al., Handbook of Materials Characterization, S. Sharma (Ed.), Cham, Springer, 37-75, https://doi.org/10.1007/978-3-319-92955-2_2.

  18. M. C. Garcia-Gutierrez, A. Nogales, J. J. Hernandez, et al., Opt. Pura Apl., 40, No. 2, 195-200 (2007), http://core.ac.uk/download/pdf/36016247.pdf.

    Google Scholar 

  19. G. Beaucage, J. Appl. Crystallogr., 28, No. 6, 717-728 (1995), https://doi.org/10.1107/S0021889895005292.

    Article  CAS  Google Scholar 

  20. D. W. Schaefer, J. Zhao, J. M. Brown, et al., Chem. Phys. Lett., 375, Nos. 3-4, 369-375 (2003), https://doi.org/10.1016/S0009-2614(03)00867-4.

    Article  CAS  Google Scholar 

  21. V. V. Shevchenko, A. V. Stryutskii, V. N. Bliznyuk, et al., Polym. Sci. B, 56, No. 2, 216-228 (2014), https://doi.org/10.1134/S1560090414020158.

    Article  CAS  Google Scholar 

  22. S. V. Zhyltsova, N. G. Leonova, and E. A. Lysenkov, Theor. Exp. Chem., 56, No. 4, 275-282 (2020), https://doi.org/10.1007/s11237-020-09659-x.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. V. Zhyltsova or N. G. Leonova.

Additional information

Translated from Teoretychna ta Eksperymentalna Khimiya, Vol. 57, No. 2, pp. 126-132, March-April, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhyltsova, S.V., Leonova, N.G., Lysenkov, E.A. et al. Influence of 3-Glycidoxypropyltriethoxysilane on the Structural Organization of Epoxy-Silica Nanocomposites. Theor Exp Chem 57, 154–161 (2021). https://doi.org/10.1007/s11237-021-09685-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11237-021-09685-3

Keywords

Navigation