Skip to main content
Log in

Catalytic Conversion of Ethanol Into 1,3-Butadiene: Achievements and Prospects: A Review

  • Published:
Theoretical and Experimental Chemistry Aims and scope

The results of the studies of the processes of catalytic conversion of ethanol to 1,3-butadiene during the last decade are summarized. Modern ideas about the mechanisms of such processes are discussed. The influence of the composition and method of preparation, as well as the nature of modifying additives on redox and acid–base characteristics of the catalyst surface, which determine their activity and selectivity, is reviewed. Particular attention is paid to the conversion of ethanol–aqueous mixtures. The directions of further research for the implementation of the process of obtaining 1,3-butadiene from ethanol and ethanol–aqueous mixtures are outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

Notes

  1. Hereinafter, the values of conversion, selectivity, and yield are given in % for carbonaceous products.

References

  1. C. J. Li, Green Chem., 18, 1836-1838 (2016).

    CAS  Google Scholar 

  2. J. T. Kozlowski and R. J. Davis, ACS Catal., 3, 1588-1600 (2013).

    CAS  Google Scholar 

  3. J. A. Posada, A. D. Patel, A. Roes, et al., Bioresour. Technol., 135, 490-499 (2013).

    CAS  Google Scholar 

  4. C. Angelici, B. M. Weckhuysen, and P. C. A. Bruijnincx, ChemSusChem, 6, 1595-1614 (2013).

    CAS  Google Scholar 

  5. J. J. Bozell and G. R. Petersen, Green Chem., 12, 539 (2010).

    CAS  Google Scholar 

  6. J. M. R. Gallo, J. M. C. Bueno, and U. Schuchardt, J. Braz. Chem. Soc., 25, 2229-2243 (2014).

    CAS  Google Scholar 

  7. J. Pang, M. Zheng, and T. Zhang, Adv. Catal., 64, 89-91 (2019).

    Google Scholar 

  8. H. H. Khoo, Renew. Sustain. Energy Rev., 46, 100-119 (2015).

    CAS  Google Scholar 

  9. L. Axelsson, M. Franzun, M. Ostwald, et al., Biofuel. Bioprod. Biorefin., 6, 246-256 (2012).

    CAS  Google Scholar 

  10. M. Rai, A. P. Ingle, R. Pandit, et al., Catal. Rev. Sci. Eng., 61, 1-26 (2018).

    Google Scholar 

  11. E. V. Makshina, M. Dusselier, W. Janssens, et al., Chem. Soc. Rev., 43, 7917-7953 (2014).

    CAS  Google Scholar 

  12. G. Pomalaza, M. Capron, V. Ordomsky, and F. Dumeignil, Catalysts, 6, 203 (2016).

    Google Scholar 

  13. Y. Qi, Z. Liu, S. Liu, et al., Catalysts, 9, 97 (2019).

    Google Scholar 

  14. W.C. White, Chem. Biol. Interact., 166, 10-14 (2007).

    CAS  Google Scholar 

  15. M. Dahlmann, J. Grub, and E. Luser, Ullmann’s Encylopedia of Industrial Chemistry, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim (2011).

    Google Scholar 

  16. P. C. A. Bruijnincx and B. M. Weckhuysen, Angew. Chem. Int. Ed., 52, 11980-11987 (2013).

    CAS  Google Scholar 

  17. G. O. Ezinkwo, V. F. Tretjakov, R. M. Talyshinky, et al., Catal. Commun., 43, 207-212 (2014).

    CAS  Google Scholar 

  18. A. Jbuluius, S. Teleshov, and T. Miryugina, Bull. Hist. Chem., 45, 38-42 (2020).

    Google Scholar 

  19. G. O. Ezinkwo, V. P. Tretyakov, A. Aliyu, and A. M. Ilolov, ChemBioEng Rev., 1, 194-203 (2014).

    CAS  Google Scholar 

  20. A. Talalay and L. Talalay, Rubber Chem. Technol., 15, 403-429 (1942).

    CAS  Google Scholar 

  21. S. V. Lebedev, Zh. Obshch. Khim., 3, 698-717 (1933).

    CAS  Google Scholar 

  22. V. F. Tretyakov, A. M. Gyulmaliyev, R. M. Nalyshinskiy, et al., SOCAR Proc., 4, 69-74 (2015).

    Google Scholar 

  23. Y. A. Gorin, Zh. Obshch. Khim.,16, 283-294 (1946).

    CAS  Google Scholar 

  24. J. Ostromislenskiy, J. Russ. Phys. Chem. Soc., 47, 1472-1506 (1945).

    Google Scholar 

  25. E. R. Gilliland, The Scientific Monthly, 58, 5-15 (1949).

    Google Scholar 

  26. B. B. Corson, E. E. Stahey, H. E. Jones, and H. D. Bishop, Ind. Eng. Chem., 41, 1012-1017 (1949).

    CAS  Google Scholar 

  27. A. D. Patel, K. Meesters, H. den Uil, et al., Energy Environ. Sci., 5, 8430 (2012).

    CAS  Google Scholar 

  28. D. Cespi, F. Passarini, I. Vassura, and F. Cavani, Green Chem., 18, 1625-1638 (2016).

    CAS  Google Scholar 

  29. Michelin’s Bio-Butadiene Technology Moving to Validation Phase, https://www.biofuelsdigest.com/bdigest/2019/09/26/michelins-bio-butadiene-technology-moving-to-validation-phase,n.d.

  30. S. Shylesh, A. A. Gokhale, C. D. Scown, et al., ChemSusChem, 9, 1462-1472 (2016).

    CAS  Google Scholar 

  31. H. Duan, Y. Yamada, and S. Sato, Chem. Lett., 45, 1036-1047 (2016).

    CAS  Google Scholar 

  32. P. I. Kyriienko, O. V. Larina, S. O. Soloviev, et al., ACS Sustain. Chem. Eng., 5, 2075-2083 (2017).

    CAS  Google Scholar 

  33. J. Moncada, I. V. Gursel, E. Worrell, and A. Ramirez, Biofuel. Bioprod. Biorefin., 12, 600-623 (2018).

    CAS  Google Scholar 

  34. I. Rossetti, J. Lasso, M. Compagnoni, et al., Chem. Eng. Trans., 43, 229-234 (2015).

    Google Scholar 

  35. S. Fan, J. Liu, X. Tang, et al., Chin. J. Chem. Eng., 27, 1339-1347 (2019).

    CAS  Google Scholar 

  36. D. Cai, Q. Zhu, C. Chen, et al., J. Taiwan Inst. Chem. Eng., 82, 137-143 (2018).

    CAS  Google Scholar 

  37. R. Dastillung , B. Fischer, M. Jacquin, and R. Huyghe, “Method for the production of butadiene from ethanol in one low-water- and low-energy-consumption reaction step,” Pat. US 20170267604 A1., Publ. 21.09.2017.

  38. I. Rossetti, M. Compagnoni, E. Finocchio, et al., Appl. Catal. B Environ., 210, 407-420 (2017).

    CAS  Google Scholar 

  39. I. Rossetti, M. Compagnoni, G. De Guido, et al., Can. J. Chem. Eng., 95, 1752-1759 (2017).

    CAS  Google Scholar 

  40. M. Bender, ChemBioEng Rev., 1, 136-147 (2014).

    CAS  Google Scholar 

  41. R. G. Grim, A. T. To, C. A. Farberow, et al., ACS Catal., 9, 4145-4172 (2019).

  42. F. Jing, B. Katryniok, M. Araque, et al., Catal. Sci. Technol., 6, 5830-5840 (2016).

    CAS  Google Scholar 

  43. D. Sun, S. Arai, H. Duan, et al., Appl. Catal. A General, 531, 21-28 (2017).

    CAS  Google Scholar 

  44. O. A. Abdelrahman, D. S. Park, K. P. Vinter, et al., ACS Sustain. Chem. Eng., 5, 3732-3736 (2017).

    CAS  Google Scholar 

  45. A. Kuznetsov, G. Kumar, M. A. Ardagh, et al., ACS Sustain. Chem. Eng., 8, 3273-3282 (2020).

    CAS  Google Scholar 

  46. M. J. Climent, A. Corma, S. Iborra, and M. J. Sabater, ACS Catal., 4, 870-891 (2014).

    CAS  Google Scholar 

  47. M. D. Jones, Chem. Cent. J., 8, 53 (2014).

    Google Scholar 

  48. M. Gao, M. Zhang, and Y. Yu, Catal. Lett., 146, 2450-2457 (2016).

    CAS  Google Scholar 

  49. M. Zhang, M. Gao, J. Chen, and Y. Yu, RSC Adv., 5, 25959-25966 (2015).

    CAS  Google Scholar 

  50. P. Mueller, S. P. Burt, A. M. Love, et al., ACS Catal., 6, 6823-6832 (2016).

    Google Scholar 

  51. W. E. Taifan, T. Buuko, and J. Baltrusaitis, J. Catal., 346, 78-91 (2017).

    CAS  Google Scholar 

  52. P. Mueller, S.C. Wang, S. Burt, and I. Hermans, ChemCatChem., 9, 3572-3582 (2017).

    CAS  Google Scholar 

  53. V. L. Sushkevich and I. I. Ivanova, Appl. Catal. B Environ., 215, 36-49 (2017).

    CAS  Google Scholar 

  54. W. Taifan, G. X. Yan, and J. Baltrusaitis, Catal. Sci. Technol., 7, 4648-4668 (2017).

    CAS  Google Scholar 

  55. X. Dong, C. Liu, D. Fan, et al., Appl. Surf. Sci., 481, 576-587 (2019).

    CAS  Google Scholar 

  56. X. Dong, J. Lu, Y. Yu, and M. Zhang, Phys. Chem. Chem. Phys., 20, 12970-12978 (2018).

    CAS  Google Scholar 

  57. H. T. Abdulrazzaq, A. R. Chokanlu, B. G. Frederick, and T. J. Schwartz, ACS Catal., 10, 6318-6331 (2020).

    CAS  Google Scholar 

  58. P. I. Kyriienko, O. V. Larina, S. O. Soloviev, et al., Catal. Commun., 77, 123-126 (2016).

    CAS  Google Scholar 

  59. E. V. Makshina, W. Janssens, B. F. Sels, and P. A. Jacobs, Catal. Today, 198, 338-344 (2012).

    CAS  Google Scholar 

  60. V. L. Sushkevich, I. I. Ivanova, V. V. Ordomsky, and E. Taarning, ChemSusChem, 2527-2536 (2014).

  61. O. V. Larina, P. I. Kyriienko, and S. O. Soloviev, Catal. Lett., 145, 1162-1168 (2015).

    CAS  Google Scholar 

  62. C. Angelici, M. E. Z. Velthoen, B. M. Weckhuysen, and P. C.A. Bruijnincx, ChemSusChem, 7, 2505-2515 (2014).

    CAS  Google Scholar 

  63. W. E. Taifan, Y. Li, J. P. Baltrus, et al., ACS Catal., 9, 269-285 (2019).

    CAS  Google Scholar 

  64. Y. Hayashi, S. Akiyama, A. Miyaji, et al., Phys. Chem.Chem. Phys., 18, 25191-25209 (2016).

    CAS  Google Scholar 

  65. S. Da Ros, M. D. Jones, D. Mattia, et al., Chem. Eng. J., 308, 988-1000 (2017).

    Google Scholar 

  66. R. K. Chen, T. F. Yu, M. X. Wu, et al., ACS Sustain. Chem. Eng., 6, 11949-11958 (2018).

    CAS  Google Scholar 

  67. A. Chieregato, J. V. Ochoa, C. Bandinelli, et al., ChemSusChem, 8, 377-388 (2015).

    CAS  Google Scholar 

  68. J. Velasquez Ochoa, C. Bandinelli, O. Vozniuk, et al., Green Chem., 18, 1653-1663 (2016).

    Google Scholar 

  69. E. V. Makshina, W. Janssens, B. F. Sels, and P. A. Jacobs, Catal. Today., 198, 338-344 (2012).

    CAS  Google Scholar 

  70. V. V. Ordomsky, V. L. Sushkevich, I. I. Ivanova, J. Mol. Catal. A Chem., 333, 85-93 (2010).

    CAS  Google Scholar 

  71. D. Gabrinls, W. Y. Hernandez, B. Sels, et al., Catal. Sci. Technol., 5, 3876-3902 (2015).

    Google Scholar 

  72. C. Angelici, F. Meirer, A. M. J. Van Der Eerden, et al., ACS Catal., 5, 6005-6015 (2015).

    CAS  Google Scholar 

  73. W. Janssens, E. V. Makshina, P. Vanelderen, et al., ChemSusChem, 8, 994-1008 (2015).

    CAS  Google Scholar 

  74. M. Zhang, Y. Qin, X. Tan, et al., Catal. Lett., 150, 1462-1470 (2020).

    CAS  Google Scholar 

  75. V. A. Ivanov, J. Bachelier, F. Audry, and J. C. Lavalley, J. Mol. Catal., 91, 45-59 (1994).

    CAS  Google Scholar 

  76. C. Angelici, M. E. Z. Velthoen, B. M. Weckhuysen, and P. C. A. Bruijnincx, Catal. Sci. Technol., 5, 2869-2879 (2015).

    CAS  Google Scholar 

  77. W. E. Taifan and J. Baltrusaitis, J. Phys. Chem. C, 122, 20894-20906 (2018).

    CAS  Google Scholar 

  78. R. Ohnishi, T. Akimoto, and K. Tanabe, J. Chem. Soc. Chem. Commun., 70, 1613 (1985).

    Google Scholar 

  79. S. Kvisle, A. Aguero, and R. P. A. Sneeden, Appl. Catal., 43, 117-131 (1988).

    CAS  Google Scholar 

  80. S. H. Chung, C. Angelici, S. O. M. Hinterding, et al., ACS Catal., 6, 4034-4045 (2016).

    CAS  Google Scholar 

  81. S. Da Ros, M. D. Jones, D. Mattia, et al., ChemCatChem, 8, 2376-2386 (2016).

    Google Scholar 

  82. X. Huang, Y. Men, J. Wang et al., Catal. Sci. Technol., 7, 168-180 (2017).

    CAS  Google Scholar 

  83. S. Li, Y. Men, J. Wang, et al., Appl. Catal. A General, 577, 1-9 (2019).

    Google Scholar 

  84. R. He, Y. Men, X. Huang, et al., Chem. Lett., 47, 1097-1100 (2018).

    CAS  Google Scholar 

  85. O. V. Larina, P. I. Kyriienko, V. V. Trachevskii, et al., Theor. Exp. Chem., 51, 387-393 (2016).

    CAS  Google Scholar 

  86. Q. Zhu, B. Wang, and T. Tan, ACS Sustain. Chem. Eng., 5, 722-733 (2016).

    Google Scholar 

  87. Y. Sekiguchi, S. Akiyama, W. Urakawa, et al., Catal. Commun., 68, 20-24 (2015).

    CAS  Google Scholar 

  88. M. Lewandowski, G. S. Babu, M. Vezzoli, et al., Catal. Commun., 49, 25-28 (2014).

    CAS  Google Scholar 

  89. M. Gao, M. Zhang, and Y. Li, RSC Adv., 7, 11929-11937 (2017).

    CAS  Google Scholar 

  90. M. Gao, M. Zhang, and Y. Li, RSC Adv., 7, 26935-26942 (2017).

    CAS  Google Scholar 

  91. A. Klein, K. Keisers, and R. Palkovits, Appl. Catal. A General, 514, 192-202 (2016).

    CAS  Google Scholar 

  92. A. Klein and R. Palkovits, Catal. Commun., 91, 72-75 (2017).

    CAS  Google Scholar 

  93. M. J. Chung, S. H. Han, K.Y. Park, and S. K. Ihm, J. Mol. Catal., 79, 335-345 (1993).

    CAS  Google Scholar 

  94. V. K. Raizada, V. S. Tripathi, D. Lal, et al., J. Chem. Technol. Biotechnol., 56, 265-270 (1993).

    CAS  Google Scholar 

  95. J. M. Vohs and M.A. Barteau, Surf. Sci., 221, 590-608 (1989).

    CAS  Google Scholar 

  96. X. Wang, Y. Men, J. Wang, et al., Appl. Catal. A General, 598, 117565 (2020).

    Google Scholar 

  97. Y. Xu, Z. Liu, Z. Han, and M. Zhang, RSC Adv., 7, 7140-7149 (2017).

    CAS  Google Scholar 

  98. O. V. Larina, P. I. Kyriienko, and S. O. Soloviev, Theor. Exp. Chem., 52, 51-56 (2016).

    CAS  Google Scholar 

  99. O. V. Larina, P. I. Kyriienko, and S. O. Soloviev, Theor. Exp. Chem., 51, 252-258 (2015).

    CAS  Google Scholar 

  100. S. N. Orlyk, Theor. Exp. Chem., 53, 315-326 (2017).

    CAS  Google Scholar 

  101. V. J. Ochoa, A. Malmusi, C. Recchi, and F. Cavani, ChemCatChem, 8, 2128-2135 (2017).

    Google Scholar 

  102. B. Szabo, G. Novodarszki, Z. May, et al., Mol. Catal., 491, 110984 (2020).

    Google Scholar 

  103. S. Akiyama, A. Miyaji, Y. Hayashi, et al., J. Catal., 359, 184-197 (2018).

    CAS  Google Scholar 

  104. F. Zaccheria, N. Scotti, and N. Ravasio, ChemCatChem, 10, 1526-1535 (2018).

    CAS  Google Scholar 

  105. A. Tripathi, K. Faungnawakij, A. Laobuthee, et al., Int. J. Chem. React. Eng., 14, 945-954 (2016).

    CAS  Google Scholar 

  106. J. E. Rekoske and M. A. Barteau, Ind. Eng. Chem. Res., 50, 41-51 (2011).

    CAS  Google Scholar 

  107. B. B. Corson, H. E. Jones, C. E. Welling, et al., Ind. Eng. Chem., 42, 359-373 (1950).

    CAS  Google Scholar 

  108. M. D. Jones, C. G. Keir, C. Di Iulio, et al., Catal. Sci. Technol., 1, 267-272 (2011).

    CAS  Google Scholar 

  109. V. L. Sushkevich, I. I. Ivanova, and E. Taarning, Green Chem., 17, 2552-2559 (2015).

    CAS  Google Scholar 

  110. V. L. Sushkevich, D. Palagin, and I. I. Ivanova, ACS Catal., 5, 4833-4836 (2015).

    CAS  Google Scholar 

  111. V. L. Sushkevich and I. I. Ivanova, ChemSusChem, 9, 2216-2225 (2016).

    CAS  Google Scholar 

  112. M. Gao, Z. Liu, M. Zhang, and L. Tong, Catal. Lett., 144, 2071-2079 (2014).

    CAS  Google Scholar 

  113. M. Gao, M. Zhang, and H. Jiang, Catal. Surv. Asia, 22, 118-122 (2018).

    CAS  Google Scholar 

  114. M. Zhang, X. Tan, T. Zhang, et al., RSC Adv., 8, 34069-34077 (2018).

    CAS  Google Scholar 

  115. Z. Han, X. Li, M. Zhang, et al., RSC Adv., 5, 103982-103988 (2015).

    CAS  Google Scholar 

  116. T. De Baerdemaeker, M. Feyen, U. Muller, et al., ACS Catal., 5, 3393-3397 (2015).

    Google Scholar 

  117. L. H. Chagas, C. R. V. Matheus, P. C. Zonetti, and L. G. Appel, Mol. Catal., 458, 272-279 (2018).

    CAS  Google Scholar 

  118. L. Wang, W. Zhu, D. Zheng, et al., React. Kinet. Mech. Catal., 101, 365-375 (2010).

    CAS  Google Scholar 

  119. A. G. Sato, D. P. Volanti, D. M. Meira, et al., J. Catal., 307, 1-17 (2013).

    CAS  Google Scholar 

  120. J. Sun, K. Zhu, F. Gao, et al., J. Am. Chem. Soc., 133, 11096-9 (2011).

    CAS  Google Scholar 

  121. J. T. Kozlowski and R. J. Davis, J. Energy Chem., 22, 58-64 (2013).

    CAS  Google Scholar 

  122. N. V. Vlasenko, P. I. Kyriienko, K. V. Valihura, et al., Theor. Exp. Chem., 55, N 1, 43-49 (2019).

  123. L. H. Chagas, P. C. Zonetti, C. R. V. Matheus, et al., ChemCatChem, 11, 5625-5632 (2019).

    CAS  Google Scholar 

  124. J. T. Kozlowski, M. Behrens, R. Schugl, and R. J. Davis, ChemCatChem, 5, 1989-1997 (2013).

    CAS  Google Scholar 

  125. M. Gao, H. Jiang, and M. Zhang, Appl. Surf. Sci., 439, 1072-1078 (2018).

    CAS  Google Scholar 

  126. V. L. Dagle, M. D. Flake, T. L. Lemmon, et al., Appl. Catal. B Environ., 236, 576-587 (2018).

    CAS  Google Scholar 

  127. J. L. Cheong, Y. Shao, S. J. R. Tan, et al., ACS Sustain. Chem. Eng., 4, 4887-4894 (2016).

    CAS  Google Scholar 

  128. S. A. Akhade, A.Winkelman, V. Lebarbier Dagle, et al., J. Catal., 386, 30-38 (2020).

    CAS  Google Scholar 

  129. H. Li, J. Pang, N. R. Jaegers, et al., J. Energy Chem., 54, 7-15 (2021).

    Google Scholar 

  130. V. V. Ordomskiy, V. L . Sushkevich, and I. I. Ivanova, “One-step method for butadiene production,” Pat. US 8 921 635 B2, Publ. Dec. 30, 2014.

  131. V. L. Sushkevich, I. I. Ivanova, S. Tolborg, and E. Taarning, J. Catal., 316, 121-129 (2014).

    CAS  Google Scholar 

  132. V. L. Sushkevich, A. Vimont, A. Travert, and I. I. Ivanova, J. Phys. Chem. C., 119, 17633-17639 (2015).

    CAS  Google Scholar 

  133. M. M. Kurmach, O. V. Larina, P. I. Kyriienko, et al., ChemistrySelect, 3, 8539-8546 (2018).

    CAS  Google Scholar 

  134. P. I. Kyriienko, O. V. Larina, S. Dzwigaj, et al., Theor. Exp. Chem., 55, N 4, 266-273 (2019).

  135. O. V. Larina, P. I. Kyriienko, D. Y. Balakin, et al., Catal. Sci. Technol., 9, 3964-3978 (2019).

    CAS  Google Scholar 

  136. C. Wang and M. Zheng, Green Chem., 21, 1006-1010 (2019).

    CAS  Google Scholar 

  137. P. T. Patil, D. Liu, Y. Liu, et al., Appl. Catal. A General., 543, 67-74 (2017).

    CAS  Google Scholar 

  138. G. M. Cabello Gonzalez, R. Murciano, A. L. Villanueva Perales, et al., Appl. Catal. A General, 70, 96-106 (2019).

    Google Scholar 

  139. G. M. Cabello Gonzalez, P. Concepciyn, A. Villanueva Perales, et al., Fuel Process. Technol., 193, 263-272 (2019).

    CAS  Google Scholar 

  140. E. E. Stahly, H. E. Jones, and B. B. Corson, Ind. Eng. Chem., 40, 2301-2303 (1948).

    CAS  Google Scholar 

  141. H. J. Chae, T. W. Kim, Y. K. Moon, et al., Appl. Catal. B Environ., 150, 151, 596-604 (2014).

    Google Scholar 

  142. T. W. Kim, J. W. Kim, S. Y. Kim, et al., Chem. Eng. J., 278, 217-223 (2015).

    CAS  Google Scholar 

  143. N. Cadran and A. Chaumonnot, “Ta-Nb catalyst for the reduction of 1,3-butadiene,” Pat. WO2017009108A1, Publ. 19.01.2017.

  144. S. Dzwigaj, Y. Millot, and M. Che, Catal. Lett., 135, 169-174 (2010).

    CAS  Google Scholar 

  145. F. Tielens, T. Shishido, and S. Dzwigaj, J. Phys. Chem. C, 114, 9923-9930 (2010).

    CAS  Google Scholar 

  146. P. I. Kyriienko, O. V. Larina, N. O. Popovych, et al., J. Mol. Catal. A Chem., 424, 27-36 (2016).

    CAS  Google Scholar 

  147. N. O. Popovych, O. V. Larina, S. M. Orlyk et al., Theor. Exp. Chem., 54, 255-264 (2018).

    CAS  Google Scholar 

  148. D. D. Dochain, A. Styskalik, and D. P. Debecker, Catalysts, 9, 920 (2019).

    CAS  Google Scholar 

  149. G. Pomalaza, G. Vofo, M. Capron, and F. Dumeignil, Green Chem., 20, 3203-3209 (2018).

    CAS  Google Scholar 

  150. G. Pomalaza, M. Capron, and F. Dumeignil, Appl. Catal. A General, 591, 117386 (2020).

    Google Scholar 

  151. J. Y. Liu, W.N. Su, J. Rick, et al., ChemSusChem, 7, 570576 (2014).

    Google Scholar 

  152. A. M. Frey, S. K. Karmee, K. P. de Jong, et al., ChemCatChem, 5, 594-600 (2013).

    CAS  Google Scholar 

  153. Z. Boukha, L. Fitian, M. Lypez-Haro, et al., J. Catal., 272, 121-130 (2010).

    CAS  Google Scholar 

  154. B. Zhang, F. Xie, J. Yuan, et al., Catal. Commun., 92, 46-50 (2017).

    Google Scholar 

  155. S. Sato, R. Takahashi, M. Kobune, et al., Appl. Catal. A General, 356, 64-71 (2009).

    CAS  Google Scholar 

  156. F. Hayashi, M. Iwamoto, ACS Catal., 3, 14-17 (2013).

    CAS  Google Scholar 

  157. W. Xia, F. Wang, L. Wang, et al., Catal. Lett., 150, 150-158 (2019).

    Google Scholar 

  158. M. Lewandowski, A. Ochenduszko, and M. D. Jones, “Process for the production of 1,3-butadiene”, Pat. WO2014/180778, Publ. 19.10.2016.

  159. T. F. Yu, C. W. Chang, P. W. Chung, and Y. C. Lin, Fuel Process. Technol., 194, 106117 (2019).

    CAS  Google Scholar 

  160. O. V. Larina, “Influence of the composition ofMxOy-SiO2(M = Mg, Zn, Zr, La) oxide and zeolite Ta/SiBEA catalysts on their catalytic properties in the conversion processes of ethanol into 1,3-butadiene,” Dissertation for the degree of Candidate of Chemical Sciences, Kyiv, 2017. DOI:https://doi.org/10.13140/RG.2.2.27218.15046

  161. P. Tu, B. Xue, Y. Tong, et al., ChemistrySelect., 5, 7258-7266 (2020).

    CAS  Google Scholar 

  162. W. Dai, S. Zhang, Z. Yu, et al., ACS Catal., 7, 3703-3706 (2017).

    CAS  Google Scholar 

  163. T. Yan, W. Dai, G. Wu, et al., ACS Catal., 8, 2760-2773 (2018).

    CAS  Google Scholar 

  164. Q. Zhu, L. Yin, K. Ji, et al., ACS Sustain. Chem. Eng., 8, 1555-1565 (2020).

    CAS  Google Scholar 

  165. Y. Zhao, S. Li, Z. Wang, et al., Chin. Chem. Lett., 31, 535-538 (2020).

    CAS  Google Scholar 

  166. V. V. Ordomskiy, V. L. Sushkevych, and I. I. Ivanova, “One-phase method for butadiene production”, Pat. 2440962 C1 RU, Publ. 27.01.2012.

  167. S. V. Lebedev, Y. A. Gorin, and S. V. Hutoretskaya, Sintetich. Kauchuk, 8 (1935).

  168. O. V. Larina, I. M. Remezovskyi, P. I. Kyriienko, et al., React. Kinet. Mech. Catal., 127, 903-915 (2019).

    CAS  Google Scholar 

  169. P. I. Kyriienko, O. V. Larina, D. Yu. Balakin, et al., Theor. Exp. Chem., 56, 33-38 (2020).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. I. Kyriienko.

Additional information

Translated from Teoretychna ta Eksperymentalna Khimiya, Vol. 56, No. 4, pp. 201-227, July-August, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kyriienko, P.I., Larina, O.V., Soloviev, S.O. et al. Catalytic Conversion of Ethanol Into 1,3-Butadiene: Achievements and Prospects: A Review. Theor Exp Chem 56, 213–242 (2020). https://doi.org/10.1007/s11237-020-09654-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11237-020-09654-2

Keywords

Navigation