Skip to main content

Effect of the Modification of TiO2 with Thiourea on its Photocatalytic Activity in Doxycycline Degradation

C,S-Doped TiO2 nanoparticles with diameter 55-85 nm were obtained by a solvothermal sol-gel method with subsequent calcination; the diameter of the component crystallites was 9-11 nm. An increase in the thiourea concentration in the reaction mixture reduced the anatase content, while increasing the particle size, specific surface area, as well as carbon and sulfur contents. The photocatalytic activity of such materials in the degradation of doxycycline upon UV irradiation depends mainly on the anatase content and mesopore surface area, while such activity upon irradiation with visible light depends mostly on the presence of carbonate and sulfate groups.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.

References

  1. V. Etacheri, C. Di Valentin, J. Schneider, et al., J. Photochem. Photobiol. C, 25, 1-29 (2015).

    CAS  Article  Google Scholar 

  2. M. Pelaez, N. T. Nolan, S. C. Pillai, et al., Appl. Catal. B, 125, 331-349 (2012).

    CAS  Article  Google Scholar 

  3. Y. Nam, J. H. Lim, K. C. Ko, et al., J. Mater. Chem. A, 7, 13833-13859 (2019).

    CAS  Article  Google Scholar 

  4. W. Li, Phys. Status Solidi RRL, 1-18 (2014).

  5. C. Di Valentin, G. Pacchioni, A. Selloni, et al., J. Phys. Chem. B, 109, 11414 (2005).

    Article  Google Scholar 

  6. Y. Cui, H. Du, and L. Wen, J. Mater. Sci. Technol., 24, No. 5, 675-689 (2008).

    CAS  Google Scholar 

  7. S. Matsushima, K. Takahara, H. Yamane, et al., J. Phys. Chem. Solids, 58, 206-210 (2007).

    Article  Google Scholar 

  8. C. McManamon, J. O’Connell, P. Delaney, et al., J. Mol. Catal. A, 406, 51-57 (2015).

    CAS  Article  Google Scholar 

  9. M. Zhou and J. Yu, J. Hazard. Mater., 152, 1229-1236 (2008).

    CAS  Google Scholar 

  10. W. Shi, W. Yang, Q. Li, et al., Nanoscale Res. Lett., 7, 590 (2012).

    Article  Google Scholar 

  11. B. Naik, K. M. Parida, and C. S. Gopinath, J. Phys. Chem. C, 114, 19473-19482 (2010).

    CAS  Google Scholar 

  12. T. Ohno, M. Akiyoshi, T. Umebayashi, et al., Appl. Catal. A, 265, 115-121 (2004).

    CAS  Article  Google Scholar 

  13. S. Pany, B. Naik, M. Satyabadi, et al., ACS Appl. Mater. Interfaces, 6, 839-846 (2014).

    CAS  Article  Google Scholar 

  14. L. Szatmary, S. Bakardkieva, J. Subrt, et al., Catal. Today, 161, No. 1, 23-28 (2011).

    CAS  Article  Google Scholar 

  15. X. Wu, X. Yin, Q. Dong, et al., Appl. Catal. B, 142/143, 450-457 (2013).

    Article  Google Scholar 

  16. K. Palanivelu, J. S. Im, and Y.-S. Lee, Carbon Sci., 8, No. 3, 214-224 (2007).

    Article  Google Scholar 

  17. M. Cao, P. Wang, Y. Ao, et al., J. Colloid Interface Sci., 467, 129-139 (2016).

    CAS  Article  Google Scholar 

  18. G. Yang, Z. Yan and T. Xiao, Appl. Surf. Sci., 258, 4016-4022 (2012).

    CAS  Article  Google Scholar 

  19. F. Chen, X. Xu, S. Shen, et al., Micropor. Mesopor. Mater., 75, No. 3, 231-235 (2004).

    CAS  Article  Google Scholar 

  20. H. Nishikiori, M. Hayashibe, and T. Fujii, Catalysts, 3, 363-377 (2013).

    CAS  Article  Google Scholar 

  21. S. Doeuff, M. Henry, C. Sanchez, et al., Non-Cryst. Solids, 89, 206216 (1987).

    Google Scholar 

  22. N. I. Romanovska, P. A. Manorik, N. I. Ermokhina, et al., Theor. Exp. Chem., 55, No. 5, 345-353 (2019).

    CAS  Article  Google Scholar 

  23. K. Nakamoto, Infrared Spectra of Inorganic and Coordination Compounds, John Wiley & Sons, New York (1963).

    Google Scholar 

  24. P. A. Manorik, Ya. D. Lampeka, N. I. Ermokhina, et al., Theor. Exp. Chem., 53, No. 5, 349-358 (2017).

    Article  Google Scholar 

  25. D. C. Hurum, A. G. Agrios, K. A. Gray, et al., J. Phys. Chem. B, 107, 4545-4552 (2003).

    CAS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. I. Romanovska.

Additional information

Translated from Teoreticheskaya i Eksperimental’naya Khimiya, Vol. 56, No. 3, pp. 172-180, May-June, 2020.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Romanovska, N.I., Manoryk, P.A., Selyshchev, O.V. et al. Effect of the Modification of TiO2 with Thiourea on its Photocatalytic Activity in Doxycycline Degradation. Theor Exp Chem 56, 183–191 (2020). https://doi.org/10.1007/s11237-020-09650-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11237-020-09650-6

Key words

  • mesoporous C,S-doped TiO2
  • anatase
  • sol-gel synthesis
  • thiourea
  • morphology
  • photocatalytic activity
  • doxycycline