Determination of the Electrochemically Active Surface Area of PbSe and Bi2Te3 Films Using the Deposition of Lead Atoms

Electrochemical deposition of an atomic layer of Pb (underpotential deposition (upd)) was used to determine the electrochemically active surface area of PbSe and Bi2Te3 films obtained under various electrodeposition conditions. The investigations were carried out by cyclic voltammetry and scanning electron microscopy. It was shown that underpotential deposition of Pb atomic layers on PbSe makes it possible to trace the change in the PbSe area during film growth and also to compare the areas of Bi2Te3 films with different surface morphology.

This is a preview of subscription content, log in to check access.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.


  1. 1.

    H. Goldsmid, Materials, 7, No. 4, 2577-2592 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Y. Ma, Q. Hao, B. Poudel, et al., Nano Lett., 8, No. 8, 2580-2584 (2008).

    Article  CAS  PubMed  Google Scholar 

  3. 3.

    Z. H. Dughaish, Phys. B, 322, Nos. 1/2, 205-223 (2002).

    Article  CAS  Google Scholar 

  4. 4.

    A. D. Lalonde, Y. Pei, H. Wang, and J. G. Snyder, Mater. Today, 14, No. 11, 526-532 (2011).

    Article  CAS  Google Scholar 

  5. 5.

    L. A. Kuznetsova, V. L. Kuznetsov, and D. M. Rowe, J. Phys. Chem. Solids, 61, No. 8, 1269-1274 (2000).

    Article  CAS  Google Scholar 

  6. 6.

    Y. Q. Cao, T. J. Zhu, X. B. Zhao, et al., Appl. Phys. A, 92, No. 2, 321-324 (2008).

    Article  CAS  Google Scholar 

  7. 7.

    M. L. Liu, I. W. Chen, F. Q. Huang, and L. D. Chen, Adv. Mater., 21, No. 37, 3808-3812 (2009).

    Article  CAS  Google Scholar 

  8. 8.

    S. V. Faleev and F. Léonard, Phys. Rev. B., 77, No. 21, 214304 (2008).

    Article  CAS  Google Scholar 

  9. 9.

    H. Alam and S. Ramakrishna, Nano Energy, 2, No. 2, 190-212 (2013).

    Article  CAS  Google Scholar 

  10. 10.

    S. Trasatti and O. A. Petrii, Int. Union Pure Appl. Chem., 63, No. 5, 711-734 (1991).

    Article  CAS  Google Scholar 

  11. 11.

    E. P. M. Oviedo, O. A. Reinaudi, L. García, and S. G. Leiva, Underpotential Deposition, Springer International Publishing, Switzerland (2016).

    Google Scholar 

  12. 12.

    Y. Liu, S. Bliznakov, and N. Dimitrov, J. Phys. Chem. C, 113, No. 28, 12362-12372 (2009).

    Article  CAS  Google Scholar 

  13. 13.

    D. Chen, Q. Tao, L. W. Liao, et al., Electrocatalysis, 2, No. 3, 207-219 (2011).

    Article  CAS  Google Scholar 

  14. 14.

    E. Kirowa-Eisner, Y. Bonfil, D. Tzur, and E. Gileadi, J. Electroanal. Chem., 552, 171-183 (2003).

    Article  CAS  Google Scholar 

  15. 15.

    S. M. Alia, K. E. Hurst, S. S. Kocha, and B. S. Pivovar, J. Electrochem. Soc., 163, No. 11, F3051-F3056 (2016).

    Article  CAS  Google Scholar 

  16. 16.

    S. P. Kounaves, J. Electrochem. Soc., 133, No. 12, 2495-2498 (1986).

    Article  CAS  Google Scholar 

  17. 17.

    G. Ragoisha, A. Bondarenko, N. Osipovich, and E. Streltsov, J. Electroanal. Chem., 565, No. 2, 227-234 (2004).

    Article  CAS  Google Scholar 

  18. 18.

    E. Herrero, L. J. Buller, and H. D. Abruna, Chem. Rev., 101, No. 7, 1897-1930 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. 19.

    M. V. Malashchonak, E. A. Streltsov, A. V. Mazanik, et al., J. Solid State Electrochem., 21, No. 3, 905-913 (2017).

    Article  CAS  Google Scholar 

  20. 20.

    M. V. Malashchonak, E. A. Streltsov, G. A. Ragoisha et al., Electrochem. Commun., 72, 176-180 (2016).

    Article  CAS  Google Scholar 

  21. 21.

    E. A. Streltsov, N. P. Osipovich, L. S. Ivashkevich, et al., Electrochim. Acta, 43, No. 8, 869-873 (1998).

    Article  CAS  Google Scholar 

  22. 22.

    D. K. Ivanou, Yu. A. Ivanova, S. K. Poznyak, et al., Electrochim. Acta, 249, No. 20, 369-376 (2017).

    Article  CAS  Google Scholar 

  23. 23.

    A. S. Bakavets, Y. M. Aniskevich, G. A. Ragoisha, and E. A. Streltsov, J. Belarusian State Univ. Chem., 1, 3-13 (2017).

    Google Scholar 

  24. 24.

    P. V. Chulkin, Y. M. Aniskevich, E. A. Streltsov, and G. A. Ragoisha, J. Solid State Electrochem., 19, No. 9, 2511-2516 (2015).

    Article  CAS  Google Scholar 

  25. 25.

    K. Momma and F. Izumi, J. Appl. Crystallogr., 44, No. 6, 1272-1276 (2011).

    Article  CAS  Google Scholar 

  26. 26.

    A. S. Bakavets, Y. M. Aniskevich, G. A. Ragoisha, and E. A. Streltsov, Electrochem. Commun., 94, 23-26 (2018).

    Article  CAS  Google Scholar 

Download references

The work was carried out with financial support from the Belarusian Republican Fundation for Fundamental Research (project X17M-003).

Author information



Corresponding author

Correspondence to E. A. Streltsov.

Additional information

Translated from Teoreticheskaya i Éksperimental’naya Khimiya, Vol. 55, No. 1, pp. 60-66, January-February, 2019.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Aniskevich, Y.M., Malashchonak, M.V., Bakavets, A.S. et al. Determination of the Electrochemically Active Surface Area of PbSe and Bi2Te3 Films Using the Deposition of Lead Atoms. Theor Exp Chem 55, 64–71 (2019).

Download citation

Key words

  • lead underpotential deposition
  • electrochemically active surface area
  • bismuth telluride
  • lead selenide
  • adatoms