Skip to main content
Log in

Effect of Silver and Gold Nanoparticles on the Spectral and Luminescent Properties of a Merocyanine Dye

  • Published:
Theoretical and Experimental Chemistry Aims and scope

An increase in the concentration of silver nanoparticles (NP) initially causes an increase and then a decrease in the absorption and fluorescence intensities of a solution of tetramethinemerocyanine dye derived from indole and thiobarbituric acid. In the case of gold NP, the dye absorption remains unchanged, while fluorescence is reduced. The lifetime of the merocyanine fluorescent state does not change upon the addition of both types of nanoparticles. It is suggested that the observed effects are related to the action of plasmons in the metal nanoparticles on the electronic processes in the dye molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

References

  1. T. Klar, M. Perner, S. Grosse, et al., Phys. Rev. Lett., 80, 4249-4252 (1998), doi: https://doi.org/10.1103/PhysRevLett.80.4249.

    Article  CAS  Google Scholar 

  2. P. K. Jain, X. Huang, I. H. El-Sayed, and M. A. El-Sayed, Plasmonics, 2, 107-118 (2007), doi: https://doi.org/10.1007/s11468-007-9031-1.

    Article  CAS  Google Scholar 

  3. T. Chen, M. Pourmand, A. Feizpour, et al., J. Phys. Chem., 4, 2147-2152 (2013), doi: https://doi.org/10.1021/jz401066g.

    Article  CAS  Google Scholar 

  4. K. Nakayama, K. Tanabe, and H. A. Atwater, Appl. Phys. Lett., 93, 121904(1-3) (2008), doi: https://doi.org/10.1063/1.2988288.

    Article  CAS  Google Scholar 

  5. C. D. Geddes (ed.), Metal-Enhanced Fluorescence, Wiley, Hoboken, NJ (2010).

    Google Scholar 

  6. P. Prasad, Nanophotonics, Wiley, Hoboken, NJ (2014).

    Google Scholar 

  7. H. Wei, Z. Wang, X. Tian, et al., Nat. Commun., 2, 387 (2011), doi: https://doi.org/10.1038/ncomms1388.

    Article  PubMed  PubMed Central  Google Scholar 

  8. R. F. Oulton, V. J. Sorger, T. Zentgraf, et al., Nature, 461, 629-632 (2009), doi: https://doi.org/10.1038/nature08364.

    Article  CAS  PubMed  Google Scholar 

  9. N. Kh. Ibrayev, A. K. Zeinidenov, and A. K. Aimukhanov, Opt. Spectrosc., 117, No. 4, 540-544 (2014), doi: https://doi.org/10.1134/S0030400X14100099.

    Article  CAS  Google Scholar 

  10. N. Kh. Ibrayev and A. K. Zeinidenov, Laser Phys. Lett., 11, No. 11, 115805 (2014), doi: https://doi.org/10.1088/1612-2011/11/11/115805.

    Article  CAS  Google Scholar 

  11. A. A. Ishchenko, Russ. Chem. Rev., 60, No. 8, 865-884 (1991), doi: https://doi.org/10.1070/RC1991v060n08ABEH001116.

    Article  Google Scholar 

  12. G. V. Bulavko and A. A. Ishchenko, Russ. Chem. Rev., 83, No. 7, 575-599 (2014), doi: https://doi.org/10.1070/RC2014v083n07ABEH004417.

    Article  CAS  Google Scholar 

  13. V. I. Bezrodnyi and A. A. Ishchenko, Appl. Phys. B, 73, No. 3, 283-285 (2001), doi: https://doi.org/10.1007/s0034000100646.

    Article  CAS  Google Scholar 

  14. R. L. Gieseking, S. Mukhopadhyay, C. Risko, et al., Adv. Mater., 26, 68-84 (2014), doi: https://doi.org/10.1002/adma.201302676.

    Article  CAS  PubMed  Google Scholar 

  15. A. V. Kulinich and A. A. Ishchenko, Russ. Chem. Rev., 78, No. 2, 141-164 (2009), doi: https://doi.org/10.1070/RC2009v078n02ABEH003900.

  16. T. C. Hales, ArXiv (1998), arXiv:math/9811071v2.

  17. A. V. Kulinich, N. A. Derevyanko, and A. A. Ishchenko, J. Photochem. Photobiol. A, 188, 207-217 (2007), doi: https://doi.org/10.1016/j.photochem.2006.12.014.

    Article  CAS  Google Scholar 

  18. A. V. Kulinich, N. A. Derevyanko, A. A. Ishchenko, et al., J. Photochem. Photobiol. A, 197, 40-49 (2008), doi: https://doi.org/10.1016/j.photochem.2007.12.003.

    Article  CAS  Google Scholar 

  19. C. J. MacNevin, D. Gremyachinskiy, C.-W. Hu, et al., Bioconjugate Chem., 24, 215-223 (2013), doi: https://doi.org/10.1021/bc3005073.

    Article  CAS  Google Scholar 

  20. S. Agnihotri, S. Mukherji, and S. Mukherji, RSC Adv., 4, 3974-3983 (2014), doi: https://doi.org/10.1039/C3RA44507K.

    Article  CAS  Google Scholar 

  21. W. Haiss, N. T. K. Thanh, J. Aveyard, and D. G. Fernig, Anal. Chem., 79, 4215-4221 (2007), doi: https://doi.org/10.1021/ac0702084.

    Article  CAS  Google Scholar 

  22. S. M. Ansar, R. Haputhanthri, B. Edmonds, et al., J. Phys. Chem. C, 115, 653-660 (2011), doi: https://doi.org/10.1021/jp110240y.

    Article  CAS  Google Scholar 

  23. A. H. Pakiari and Z. Jamshidi, J. Phys. Chem. A, 114, 9212-9221 (2010), doi: https://doi.org/10.1021/jp100423b.

    Article  CAS  PubMed  Google Scholar 

  24. P. Anger, P. Bharadwaj, and L. Novotny, Phys. Rev. Lett., 96, 113002-113005 (2006), doi: https://doi.org/10.1103/PhysRevLett.96.113002.

    Article  PubMed  Google Scholar 

  25. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters, Springer-Verlag, Berlin (1995).

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Ishchenko.

Additional information

Translated from Teoreticheskaya i Éksperimental’naya Khimiya, Vol. 54, No. 6, pp. 338-343, November-December, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aimukhanov, A.K., Ibrayev, N.K., Ishchenko, A.A. et al. Effect of Silver and Gold Nanoparticles on the Spectral and Luminescent Properties of a Merocyanine Dye. Theor Exp Chem 54, 369–374 (2019). https://doi.org/10.1007/s11237-019-09583-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11237-019-09583-9

Key words

Navigation