Advertisement

Theoretical and Experimental Chemistry

, Volume 54, Issue 4, pp 218–224 | Cite as

Catalytic Activity of N-Doped Reduced Graphene Oxide in the Hydrogenation of Ethylene and Acetylene

  • A. A. AbakumovEmail author
  • I. B. Bychko
  • A. S. Nikolenko
  • P. E. Strizhak
Article
  • 52 Downloads

Catalytic activity was shown for N-doped reduced graphene oxide (N-RGO), subjected to prior thermal reduction in a hydrogen atmosphere, in the hydrogenation of ethylene and acetylene. Samples of N-RGO and activated N-RGO (N-RGO-H2) were characterized by SEM, TEM, IR spectroscopy, Raman spectroscopy, and X-ray diffraction (XRD). Our results indicate the catalytic activity of N-RGO-H2 may be attributed to the presence of nitrogen-containing fragments, which may reveal frustrated Lewis pairs properties.

Key words

graphene catalysis ethylene acetylene hydrogenation 

Notes

This work was carried out in the framework of the Joint Scientific Research Program on New Functional Compounds and Materials for the Chemical Industry of the National Academy of Sciences of Ukraine (Contract No. 5-18) and the Targeted Joint Basic Research Program of the National Academy of Sciences of Ukraine on Fundamental Problems in the Creation of New Nanomaterials and Nanotechnologies (Contract No. 29/18-N).

References

  1. 1.
    K. Gotoh, T. Kinumoto, E. Fujii, et al., Carbon, 49, 1118-1125 (2011).CrossRefGoogle Scholar
  2. 2.
    M. F. El Kady and R. Kaner, Nat. Commun., 4, 1475 (2013).CrossRefGoogle Scholar
  3. 3.
    S. Navalon, A. Dhakshinamoorthy, M. Alvaro, et al., Chem. Soc. Rev., 46, 4501-4529 (2017).CrossRefGoogle Scholar
  4. 4.
    A. Primo, F. Neatu, M. Florea, et al., Nat. Commun., 5, 5291 (2014).CrossRefGoogle Scholar
  5. 5.
    R. Liu, F. Li, C. Chen, et al., Catal. Sci. Technol., 7, 1217-1226 (2017).CrossRefGoogle Scholar
  6. 6.
    K. Erickson, R. Erni, Z. Lee, et al., Adv. Mater., 22, 4467-4472 (2010).CrossRefGoogle Scholar
  7. 7.
    I.-T. Trotuş, T. Zimmermann, and F. Schuüth, Chem. Rev., 114, 1761-1782 (2014).CrossRefGoogle Scholar
  8. 8.
    D. C. Marcano, D. V. Kosynkin, J. B. Berlin, et al., ACS Nano, 4, No. 8, 4806-4814 (2010).CrossRefGoogle Scholar
  9. 9.
    L. Stobinski, B. Lesiak, A. Malolepszy, et al., J. Electron Spectroscop. Relat. Phenom., 195, 145-154 (2014).CrossRefGoogle Scholar
  10. 10.
    S. Eigle, C. Dotzer, and A. Hirsch, Carbon, 50, 3666-3673 (2012).CrossRefGoogle Scholar
  11. 11.
    S. Park, Y. Hu, J. O. Hwang, et al., Nat. Commun., 3, 638 (2012).CrossRefGoogle Scholar
  12. 12.
    S. Pei and H.-M. Cheng, Carbon, 50, 3210-3228 (2012).CrossRefGoogle Scholar
  13. 13.
    A. M. Dimiev and J. M. Tour, ACS Nano, 8, No. 3, 3060-3068 (2014).CrossRefGoogle Scholar
  14. 14.
    T. I. Perkhun, I. B. Bychko, A. I. Tripolsky, and P. E. Strizhak, Teor. Éksp. Khim., 48, No. 6, 345-348 (2012). [Theor. Exp. Chem., 48, No. 6, 367-370 (2013) (English translation).]Google Scholar
  15. 15.
    F. Studt, F. Abild-Pedersen, T. Bligaard, et al., Science, 320, No. 5881, 1320-1322 (2008).CrossRefGoogle Scholar
  16. 16.
    D. Teschner, J. Borsodi, A. Wootsch, et al., Science, 320, No. 5872, 86-89 (2008).CrossRefGoogle Scholar
  17. 17.
    S. Khan and M. Alcarazo, Top. Curr. Chem., 334, 157-170 (2013).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • A. A. Abakumov
    • 1
    Email author
  • I. B. Bychko
    • 1
  • A. S. Nikolenko
    • 2
  • P. E. Strizhak
    • 1
  1. 1.L. V. Pysarzhevsky Institute of Physical ChemistryNational Academy of Sciences of UkraineKyivUkraine
  2. 2.V. Lashkaryov Institute of Semiconductor PhysicsNational Academy of Sciences of UkraineKyivUkraine

Personalised recommendations