Skip to main content
Log in

Morphology and Catalytic Properties of Hierarchical Zeolites with MOR, BEA, MFI, and MTW Topology

  • Published:
Theoretical and Experimental Chemistry Aims and scope

The morphology of hierarchical zeolite nanocrystals with MOR, BEA, MFI, and MTW topology has a significant effect on the accessibility of the Brønsted and Lewis acid centers, the concentration and strength of which are determined by the type and concentration of the heteroelement B, Al, Ga, Ti, Sn, or Zr in the initial reaction mixture. Nanoparticles (0D), nanorods (1D), and nanolayers (2D) of hierarchical zeolites exhibit different catalytic activity in fine organic synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

References

  1. J. D. Sherman, Natl. Acad. Sci. USA, 96, 3471-3478 (1999).

    Article  CAS  Google Scholar 

  2. J. Čejka, G. Centi, J. Perez-Pariente, and W. J. Roth, Catal. Today, 179, 2-15 (2012).

    Article  CAS  Google Scholar 

  3. M. Choi, K. Na, J. Kim, et al., Nature, 461, 246-250 (2009).

    Article  CAS  PubMed  Google Scholar 

  4. K. Na, M. Choi, W. Park, et al., J. Am. Chem. Soc., 132, 4169-4177 (2010).

    Article  CAS  PubMed  Google Scholar 

  5. K. Cho, K. Na, J. Kim, et al., Chem. Mater., 24, 2733-2738 (2012).

    Article  CAS  Google Scholar 

  6. R. Kore, R. Sridharkrishna, and R. Srivastava, RSC Adv., 3, 1317-1322 (2013).

    Article  CAS  Google Scholar 

  7. J. Jung, C. Jo, K. Cho, and R. Ryoo, J. Mater. Chem., 22, 4637-4640 (2012).

    Article  CAS  Google Scholar 

  8. S. Hu, J. Shan, Q. Zhang, et al., Appl. Catal. A, 445/446, 215-220 (2012).

  9. Y. Seo, K. Cho, Y. Jung, and R. Ryoo, ACS Catal., 3, 713-720 (2013).

    Article  CAS  Google Scholar 

  10. E. Verheyen, C. Jo, M. Kurttepeli, et al., J. Catal., 300, 70-80 (2013).

    Article  CAS  Google Scholar 

  11. J. Kim, W. Kim, Y. Seo, et al., J. Catal., 301, 187-197 (2013).

    Article  CAS  Google Scholar 

  12. C. Jo, R. Ryoo, N. Šilková, et al., Catal. Sci. Technol., 3, 2119-2129 (2013).

  13. J. Přech, P. Eliášová, D. Aldhayan, and M. Kubu, Catal. Today, 243, 134-140 (2015).

    Article  CAS  Google Scholar 

  14. K. Na, C. Jo, J. Kim, et al., ACS Catal., 1, 901-907 (2011).

    Article  CAS  Google Scholar 

  15. J. Wang, L. Xu, K. Zhang, et al., J. Catal., 288, 16-23 (2012).

    Article  CAS  Google Scholar 

  16. W. Chaikittisilp, Y. Suzuki, R. R. Mukti, et al., Angew. Chem. Int. Ed., 52, 3355-3359 (2013).

    Article  CAS  Google Scholar 

  17. X. Zhang, D. Liu, D. Xu, et al., Science, 336, 1684-1687 (2012).

    Article  CAS  PubMed  Google Scholar 

  18. A. Inayat, C. Schneidera, and W. Schwiegera, Chem. Commun., 51, 279-281 (2015).

    Article  CAS  Google Scholar 

  19. A. V. Shvets, K. M. Konysheva, M. M. Kurmach, and P. S. Yaremov, Fundamental Problems of Creation New Substances and Materials of Chemical Production [in Russian], Akademperiodika, Kiev (2016), pp.157-167.

  20. E. M. Konysheva, P. S. Yaremov, Zh. V. Chernenko, et al., Teor. Éksp. Khim., 53, No. 6, 381-387 (2017). [Theor. Exp. Chem., 53, No. 6, 410-416 (2018) (English translation).]

  21. A. V. Shvets, N. D. Shcherban, S. V. Kolotilov, Teor. Éksp. Khim., 53, No. 5, 306-314 (2017). [Theor. Exp. Chem., 53, No. 5, 327-337 (2017) (English translation).]

  22. M. M. Kurmach, P. S. Yaremov, V. V. Tsyrina, et al., Teor. Éksp. Khim., 51, No. 4, 211-218 (2015). [Theor. Exp. Chem., 51, No. 4, 216-223 (2015) (English translation).]

  23. C. Jo, J. Jung, H. S. Shin, et al., Angew. Chem. Int. Ed., 52, 10014-10017 (2013).

    Article  CAS  Google Scholar 

  24. W. Schwieger, A. G. Machoke, T. Weissenberger, et al., Chem. Soc. Rev., 45, 3353-3376 (2016).

    Article  CAS  PubMed  Google Scholar 

  25. M. Shamzhy, O. V. Shvets, M. V. Opanasenko, et al., Adv. Porous Mater., 1, 103-113 (2013).

    Article  CAS  Google Scholar 

  26. A. Abraham, S.-H. Lee, C.-H. Shin, et al., Phys. Chem. Chem. Phys., 6, 3031-3036 (2004).

    Article  CAS  Google Scholar 

  27. M. M. Kurmach, P. S. Yaremov, M. O. Skoryk, and O. V. Shvets, Teor. Éksp. Khim., 52, No. 3, 188-195 (2016). [Theor. Exp. Chem., 52, No. 3, 190-196 (2016) (English translation).]

  28. M. M. Kurmach, N. O. Popovych, P. I. Kyriienko, et al., Teor. Éksp. Khim., 53, No. 2, 114-120 (2017). [Theor. Exp. Chem., 53, No. 2, 122-129 (2017) (English translation).]

  29. P. I. Kyriienko, O. V. Larina, N. O. Popovych, et al., J. Mol. Catal. A, 424, 27-36 (2016).

    Article  CAS  Google Scholar 

  30. P. I. Kyriienko, O. V. Larina, S. O. Soloviev, et al., Catal. Commun., 77, 123-126 (2016).

    Article  CAS  Google Scholar 

  31. M. V. Opanasenko, M. V. Shamzhy, C. Jo, et al., ChemCatChem, 6, No. 7, 1919-1927 (2014).

    Article  CAS  Google Scholar 

  32. V. R. Rani, N. Srinivas, M. R. Kishan, et al., Green Chem., 3, 305-306 (2014).

    Article  CAS  Google Scholar 

  33. A. Shahid, N. S. Ahmed, T. S. Saleh, et al., Catalysts, 7, No. 3, 84-101 (2017).

    Article  CAS  Google Scholar 

  34. J.-C. Kim, R. Ryoo, M. Opanasenko, et al., ACS Catal., 5, No. 4, 2596-2604 (2015).

    Article  CAS  Google Scholar 

  35. K. M. Konysheva, T. M. Boichuk, and O. V. Shvets, Teor. Éksp. Khim., 52, No. 2, 89-95 (2016). [Theor. Exp. Chem., 52, No. 2, 90-96 (2016) (English translation).]

  36. J. Fraissard, V. Gerda, K. I. Patrylak, and Yu. G. Voloshyna, Catal. Today, 122, Nos. 3/4, 338-340 (2007).

  37. M. M. Kurmach, O. V. Larina, P. I. Kyriienko, et al., ChemistrySelect, In press.

  38. P. P. Upare, Y. K. Hwang, J.-S. Chang, and D. W. Hwang, Ind. Eng. Chem. Res., 51, 4837-4842 (2012).

    Article  CAS  Google Scholar 

Download references

The work was carried out with partial financial support from a target program of scientific investigations of the National Academy of Sciences of Ukraine “New functional compounds and materials of chemical production.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Shvets.

Additional information

Translated from Teoreticheskaya i Éksperimental’naya Khimiya, Vol. 54, No. 2, pp. 126-132, March-April, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shvets, O.V., Konysheva, K.M. & Kurmach, M.M. Morphology and Catalytic Properties of Hierarchical Zeolites with MOR, BEA, MFI, and MTW Topology. Theor Exp Chem 54, 138–145 (2018). https://doi.org/10.1007/s11237-018-9557-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11237-018-9557-7

Key words

Navigation