Advertisement

Theoretical and Experimental Chemistry

, Volume 54, Issue 2, pp 128–137 | Cite as

Formation of Nanodimensional Layer of Catalytically Active Metals on Stainless Steel Surface by Ionic Implantation

  • V. A. Zazhigalov
  • V. V. Honcharov
  • I. V. Bacherikova
  • R. Socha
  • J. Gurgul
Article
  • 13 Downloads

It was shown by XRD, thin-layer XRD, SEM, and XPS that ionic implantation of Mo, Ni, and Ti on the surface of stainless steel (SS) leads to the formation of a layer of implants 80-100 nm thick on the SS surface with partial penetration of the implant in the surface layer to a depth of 20-50 nm. It was found that the mechanical properties and thermal stability of the composites depend on the presence of such a subsurface layer. The possibility of using the composites in catalysis and photocatalysis is discussed.

Key words

ionic implantation stainless steel catalysts 

Notes

The work was carried out with financial support of a targeted comprehensive program of research of the National Academy of Sciences of Ukraine “Fundamental problems of creation of new compounds and materials of chemical production” (project No. 20-14/20-16).

References

  1. 1.
    V. Meille, Appl. Catal. A, 315, 1-17 (2006).CrossRefGoogle Scholar
  2. 2.
    J. M. Pout, G. Foti, and D. K. Jacobson, Modification and Alloying of Surfaces by Laser, Ion, and Electron Beams [in Russian], Mashinostroenie, Moscow (1987).Google Scholar
  3. 3.
    A. A. Nikitin and N. G. Travina, Ionic implantation – an Effective Method of Changing the Surface Characteristics of Metals and Alloys [in Russian], Byul. TsNIICh, No. 23, 9-18 (1986).Google Scholar
  4. 4.
    T. R. Rautray, R. Narayanan, and K. H. Kim, Progr. Mater. Sci., 56, N 11, 1137-1177 (2011).Google Scholar
  5. 5.
    N. J. Kang, J. G. Kim, H. Y. Lee, et al., Int. J. Presic. Eng. Man., 15, No. 5, 889-894 (2014).CrossRefGoogle Scholar
  6. 6.
    V. A. Zazhigalov and V. V. Goncharov, Metallofiz. Noveishie Tekhnol., 36, No. 6, 757-766 (2014).CrossRefGoogle Scholar
  7. 7.
    Measurement of Microhardness by Scratching with Diamond Indenters [in Russian], GOST 21318-75, State Committee of Standards, Council of Ministers of the USSR (1975).Google Scholar
  8. 8.
    V. A. Zazhigalov, Kinet. Katal., 43, No. 4, 558-565 (2002).CrossRefGoogle Scholar
  9. 9.
    V. A. Zazhigalov and E. A. Diyuk, Teor. Éksp. Khim., 54, No. 1, 61-66 (2018). [Theor. Exp. Chem., 54, No. 1, 66-72 (2018) (English translation).]Google Scholar
  10. 10.
    A. A. Cherny, S. V. Maschenko, V. V. Honcharov, and V. A. Zazhigalov, Springer Proc. Phys., 167, 203-213 (2015).CrossRefGoogle Scholar
  11. 11.
    J. Dudognon, M. Vayer, A. Pineau, and R. Erre, Surface Coating Technol., 202, No. 20, 5048-5054 (2008).CrossRefGoogle Scholar
  12. 12.
    J. Dudognon, M. Vayer, A. Pineau, and R. Erre, Surface Coating Technol., 203, No. 1, 180-185 (2008).CrossRefGoogle Scholar
  13. 13.
    P. Stefanov, D. Stoychev, A. Aleksandrova, et al., Appl. Sci., 235, Nos. 1/2, 80-85 (2004).Google Scholar
  14. 14.
    Y. Adraider, Y. X. Pang, F. Nabhani, et al., Surface Coating Technol., 205, Nos. 23/24, 5345-5349 (2011).Google Scholar
  15. 15.
    V. Honcharov, V. Zazhigalov, Z. Sawlowicz, et al., Springer Proc. Phys., 195, 355-364 (2017).CrossRefGoogle Scholar
  16. 16.
    Z. L. Li, J. Wong-Leung, P. N. K. Deenapanray, et al., Nucl. Instrum. Methods Phys. Res. B, 148, Nos. 1-4, 534-539 (1999).Google Scholar
  17. 17.
    K. Spencer, D. M. Fabijanic, and M. X. Zhang, Surface Coating Technol., 206, No. 14, 3275-3282 (2012).CrossRefGoogle Scholar
  18. 18.
    N. Kaur, M. Kumar, S. K. Sharma, et al., Appl. Surface Sci., 328, 13-25 (2015).Google Scholar
  19. 19.
    F. Luo, W. Ong, Y. Guan, et al., Appl. Surface Sci., 328, 405-409 (2015).Google Scholar
  20. 20.
    V. D. Parkhomenko and P. N. Tsybulev, Teor. Éksp. Khim., 27, No. 6, 641-646 (1991). [Theor. Exp. Chem., 27, No. 6, 555-559 (1991) (English translation).]Google Scholar
  21. 21.
    A. A. Chernyi, S. V. Mashchenko, V. V. Honcharov, and V. A. Zazhigalov, Khim., Fiz., Tekhnol. Poverkhni, 5, No. 2, 190-196 (2014).Google Scholar
  22. 22.
    V. L. Levshunova, G. P. Pokhil, D. I. Tetel’baum, and P. N. Chernykh, Poverkhnost’, No. 4, 91-93 (2010).Google Scholar
  23. 23.
    A. W. Kerkar, S. D. Friedman, J. W. Lau, et al., “Metal foil catalyst members by aqueous electrophoretic deposition,” PCT, WO 95/32053, IC B 01 J 21/04, 23/02, Publ. Nov. 30, 1995.Google Scholar
  24. 24.
    H. Ota, M. Yashiro, K. Yotsuya, et al., “Metal catalyst carrier for exhaust gas purification,” USA Pat. 5486338, IC F 01 N 3/10, B 01 D 53/34, Publ. Jan. 23, 1996.Google Scholar
  25. 25.
    S. Sato, K. Oouchi, and K. Nishizawa, “Metallic catalyst carrier,” USA Pat. 6761980, IC B 01 J 35/04, Publ. July 13, 2004.Google Scholar
  26. 26.
    C. R. Hatem and B. Colombeau, “Low temperature ion implantation,” USA Pat. 2011/0034013, IC B 01 J 35/04, Publ. Feb. 10, 2011.Google Scholar
  27. 27.
    V. A. Zazhigalov, V. V. Goncharov, and I. V. Bacherikova, Fundamental Problems of Creation of New Substances and Materials of Chemical Production [in Russian], Akademperiodika, Kiev (2016), pp. 281-290.Google Scholar
  28. 28.
    B. Vincent Crist, PDF handbooks of monochromatic XPS spectra, XPS Intern. LLC, 2005, CA, USA. http://www.xpsdata.com.
  29. 29.
    S. Oktay, Z. Kahraman, M. Urgen, and K. Kazmanli, Appl. Surface Sci., 328, 255-261 (2015).Google Scholar
  30. 30.
    X. Chen, Y. B. Lou, A. C. S. Samia, et al., Adv. Funct. Mater., 15, No. 1, 41-49 (2005).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • V. A. Zazhigalov
    • 1
  • V. V. Honcharov
    • 2
  • I. V. Bacherikova
    • 1
  • R. Socha
    • 3
  • J. Gurgul
    • 3
  1. 1.Institute for Sorption and Problems of EndoecologyNational Academy of Sciences of UkraineKyivUkraine
  2. 2.State Establishment “Lugansk State Medical University”RubizhneUkraine
  3. 3.Jerzy Haber Institute of Catalysis and Surface Chemistry PASKrakowPoland

Personalised recommendations