Advertisement

Theoretical and Experimental Chemistry

, Volume 54, Issue 2, pp 99–106 | Cite as

Carbon Nitride Nanocomposites with Layered Niobates as Photocatalysts for Hydrogen Evolution from Aqueous Solutions of Organic Acids by the Action of Visible Light

  • G. Ya. Grodzyuk
  • V. V. Shvalagin
  • N. S. Andryushina
  • Ya. V. Panasiuk
  • G. V. Korzhak
  • S. Ya. Kuchmy
  • N. A. Skoryk
Article

The efficiency of H2 evolution from aqueous solutions of organic acids using composite photocatalysts derived from layered KNb3O8 and C3N4 was found to be much higher than for individual C3N4. This enhanced photocatalytic activity may be attributed to better separation of the photogenerated charges between the composite components and suppression of unwanted electron–hole recombination.

Key words

carbon nitride layered niobates nanocomposite photocatalytic hydrogen evolution visible light 

Notes

This work was carried out with the partial support of a grant from the National Academy of Sciences of Ukraine for Young Scientists (2017-2018) and a directed joint research program of the National Academy of Sciences of Ukraine entitled Fundamental Problems in the Creation of New Nanomaterials and Nanotechnologies.

References

  1. 1.
    K. Honda and A. Fujishima, Nature, 238, No. 5358, 37-38 (1972).CrossRefPubMedGoogle Scholar
  2. 2.
    O. L. Stroyuk and S. Ya. Kuchmy, Photocatalysis: Fundamentals, Applications and Prospects,M. Howard (ed.), Nova Science Publ., New York (2015), pp. 31-84.Google Scholar
  3. 3.
    E. A. Kozlova and V. N. Parmon, Usp. Khim., 86, No. 9, 870-906 (2017).CrossRefGoogle Scholar
  4. 4.
    J. Wen, J. Xie, X. Chen, and X. Li, Appl. Surface Sci., 391, No. 1, 72-123 (2017).CrossRefGoogle Scholar
  5. 5.
    A. L. Stroyuk, A. E. Raevskaya, and S. Ya. Kuchmy, Teor. Éksp. Khim., 53, No. 1, 3-32 (2018). [Theor. Exp. Chem., 53, No. 1, 1-35 (2018) (English translation).]Google Scholar
  6. 6.
    B. Liang, N. Zhang, C. Chen, et al., Catal. Sci. Technol., 7, No. 4, 1000-1005 (2017).CrossRefGoogle Scholar
  7. 7.
    A. L. Stroyuk, Ya. V. Panasyuk, A. E. Raevskaya, and S. Ya. Kuchmy, Teor. Éksp. Khim., 51, No. 4, 236-243 (2015). [Theor. Exp. Chem., 51, No. 4, 243-251 (2015) (English translation).]Google Scholar
  8. 8.
    X. Liu, W. Que, and L. B. Kong, J. Alloys Compd., 627, 117-122 (2015).CrossRefGoogle Scholar
  9. 9.
    M. A. Bizeto, A. L. Shiguihara, and V. R. Constantino, J. Mater. Chem., 19, 2512-2525 (2009).CrossRefGoogle Scholar
  10. 10.
    A. Thomas, A. Fischer, F. Goettmann, et al., J. Mater. Chem., 18, No. 41, 4893-4908 (2008).CrossRefGoogle Scholar
  11. 11.
    G. Zhang, J. Zhang, M. Zhang, and X. Wang, J. Mater. Chem., 22, No. 16, 8083-8091 (2012).CrossRefGoogle Scholar
  12. 12.
    J. Wang, D. Hao, J. Ye, and N. Umezawa, Chem. Mater., 29, No. 7, 2694-2707 (2017).CrossRefGoogle Scholar
  13. 13.
    P. Niu, G. Liu, and H.-M. Cheng, J. Phys. Chem. C, 116, No. 20, 11013-11018 (2012).CrossRefGoogle Scholar
  14. 14.
    Z. Hong, B. Shen, Y. Chen, et al., J. Mater. Chem. A, 1, No. 38, 11754-11761 (2013).CrossRefGoogle Scholar
  15. 15.
    S. Kumar, T. Surendar, B. Kumar, et al., RSC Adv., 4, No. 16, 8132-8137 (2014).CrossRefGoogle Scholar
  16. 16.
    Y. Zhao, D. L. Yu, H. Zhou, et al., J. Mater. Sci., 40, Nos. 9/10, 2645-2647 (2005).CrossRefGoogle Scholar
  17. 17.
    J. Zhang, M. Zhang, C. Yang, and X. Wang, Adv. Mater., 26, No. 24, 4121-4126 (2014).CrossRefPubMedGoogle Scholar
  18. 18.
    G. Grodziuk, N. Shcherban, V. Shvalagin, et al., Int. J. Hydrogen Energy, 42, No. 38, 24108-24116 (2017).CrossRefGoogle Scholar
  19. 19.
    V. V. Shvalagin, G. Ya. Grodzyuk, N. S. Andryushina, et al., Teor. Éksp. Khim., 52, No. 6, 337-341 (2016). [Theor. Exp. Chem., 52, No. 6, 337-341 (2017) (English translation).]Google Scholar
  20. 20.
    H. Borsook and G. Keighley, Proc. Natl. Acad. Sci. USA, 19, No. 9, 875-878 (1933).CrossRefPubMedGoogle Scholar
  21. 21.
    D. R. Lide (ed.), CRC Handbook of Chemistry and Physics, CRC Press, Boca Raton (2004).Google Scholar
  22. 22.
    B. Kienzler and J. Swanson, Microbial Effects in the Context of Past German Safety Cases (KIT Scientific Reports; 7744), KIT Sci. Publ. (2017).Google Scholar
  23. 23.
    A. V. Korzhak, N. I. Ermokhina, A. L. Stroyuk, et al., J. Photochem. Photobiol. A, 198, Nos. 2/3, 126-134 (2008).Google Scholar
  24. 24.
    V. V. Shvalagin, G. Ya. Grodzyuk, G. V. Korzhak, et al., Teor. Éksp. Khim., 53, No. 2, 94-99 (2017). [Theor. Exp. Chem., 53, No. 2, 100-105 (2017) (English translation).]Google Scholar
  25. 25.
    A. I. Kulak, Electrochemistry of Semiconductor Heterostructures [in Russian], Universitetskoe, Minsk (1986).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • G. Ya. Grodzyuk
    • 1
  • V. V. Shvalagin
    • 1
  • N. S. Andryushina
    • 1
  • Ya. V. Panasiuk
    • 1
  • G. V. Korzhak
    • 1
  • S. Ya. Kuchmy
    • 1
  • N. A. Skoryk
    • 2
  1. 1.L. V. Pysarzhevsky Institute of Physical ChemistryNational Academy of Sciences of UkraineKyivUkraine
  2. 2.LLC “NanoMedTech”KyivUkraine

Personalised recommendations