Advertisement

Theoretical and Experimental Chemistry

, Volume 54, Issue 2, pp 92–98 | Cite as

Magnetothermic Effect in Core/Shell Nanocomposite (La,Sr)MnO3/SiO2

  • Yu. Yu. Shlapa
  • S. A. Solopan
  • A. G. Belous
Article
  • 19 Downloads

Approaches have been developed for the creation of magnetic core/shell nanocomposites derived from (La,Sr)MnO3 and SiO2 with particle diameter 40-45 nm. SQUID magnetometry has shown that the presence of the SiO2 shell on the surface of the manganite nanoparticles results in lower saturation magnetization values at the constant blocking temperature. These magnetic nanocomposites displayed a magnetothermic effect with heating of the particles to 43-45 °C in an alternating magnetic field with frequency 300 kHz. This behavior indicates that these materials may be used as inducers of magnetic hyperthermia.

Key words

nanoparticles manganite core/shell structures magnetization blocking temperature specific loss power (SLP) 

Notes

This work was carried out in the framework of the directed research program of the National Academy of Sciences of Ukraine entitled Materials for Medicine and Medical Technology, Their Preparation and Use: Development of Biocompatible Medicinal Carriers Derived from Nanosized Magnetic Materials, Carbon and Cerium, State Registry No. 0017U001915 (2017-2021) as well as with partial financial support by the directed research program of the National Academy of Sciences of Ukraine entitled New Functional Compounds and Materials of Chemical Production.

References

  1. 1.
    K. Ulbrich, K. Holá, V. Šubr, et al., Chem. Rev., 116, 5338-5431 (2016).CrossRefPubMedGoogle Scholar
  2. 2.
    K. Hola, Z. Markova, G. Zoppellaro, et al., Biotechnol. Adv., 33, 1162-1176 (2015).CrossRefPubMedGoogle Scholar
  3. 3.
    A. Szpak, S. Fiejdasz, W. Prendota, et al., J. Nanopart. Res., 16, 2678-11p (2014).Google Scholar
  4. 4.
    N. G. Shetake, A. Kumar, S. Gaikwad, et al., Int. J. Hyperth., 31, 909-919 (2015).CrossRefGoogle Scholar
  5. 5.
    S. Solopan, A. Belous, A. Yelenich, et al., Exp. Oncol., 33, 131-135 (2011).Google Scholar
  6. 6.
    R. W. Habash, R. Bansal, D. Krewski, et al., Crit. Rev. Biomed. Eng., 34, 491-542 (2006).CrossRefPubMedGoogle Scholar
  7. 7.
    A. Jordan, P. Wust, H. Fahling, et al., Int. J. Hyperth., 9, 51-68 (1993).CrossRefGoogle Scholar
  8. 8.
    L. Bubnovskaya, A. Belous, S. Solopan, et al., J. Nanopart., 2014, 278761 (2014).Google Scholar
  9. 9.
    S. Laurent, S. Dutz, U. O. Hafeli, et al., Adv. Colloid Interface Sci., 166, 8-23 (2011).CrossRefPubMedGoogle Scholar
  10. 10.
    V. N. Nikiforov, Yu. A. Koksharov, S. N. Polyakov, et al., J. Alloys Compd., 569, 58-61 (2013).CrossRefGoogle Scholar
  11. 11.
    M. Gaudon, C. Laberty-Robert, F. Ansart, et al., Solid State Sci., 4, 125-133 (2002).CrossRefGoogle Scholar
  12. 12.
    Y. Shlapa, M. Kulyk, V. Kalita, et al., Nanoscale Res. Lett., 11, 1-8 (2016).CrossRefGoogle Scholar
  13. 13.
    Yu. Shlapa, S. Solopan, A. Bodnaruk, et al., J. Alloys Compd., 702, 31-37 (2017).CrossRefGoogle Scholar
  14. 14.
    L. A. Reznitskii and A. S. Guzei, Russ. Chem. Rev., 47, 99-119 (1978).CrossRefGoogle Scholar
  15. 15.
    R. Ghosh Chaudhuri and S. Paria, Chem. Rev., 112, 2373-2433 (2011).CrossRefPubMedGoogle Scholar
  16. 16.
    M. Yu. Larin, P. K. Ivanov, D. Yu. Blokhin, et al., Bioterapevt. Zh., 3, 24-29 (2005).Google Scholar
  17. 17.
    O. Kaman, P. Veverka, Z. Jirák, et al., J. Nanopart. Res., 13, 1237-1252 (2011).CrossRefGoogle Scholar
  18. 18.
    S. O. Solopan, O. I. V’yunov, A. G. Belous, et al., Solid State Sci., 14, 501-505 (2012).CrossRefGoogle Scholar
  19. 19.
    A. A. Malygin, Zh. Prikl. Khim., 69, 1585-1593 (1996).Google Scholar
  20. 20.
    A. L. Patterson, Phys. Rev., 56, 978-982 (1939).CrossRefGoogle Scholar
  21. 21.
    D. Peddis, F. Orrù, A. Ardu, et al., Chem. Mater., 24, 1062-1071 (2012).CrossRefGoogle Scholar
  22. 22.
    M. Veverka, K. Zaveta, O. Kaman, et al., J. Phys. D, 47, 065503-065511 (2014).CrossRefGoogle Scholar
  23. 23.
    M. Yamaura, R. L. Camilo, L. C. Sampaio, et al., 279, 210-217 (2004).Google Scholar
  24. 24.
    V. Kalita, A. I. Tovstolytkin, S. M. Ryabchenko, et al., Phys. Chem. Chem. Phys., 17, 18087-18097 (2015).CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Yu. Yu. Shlapa
    • 1
  • S. A. Solopan
    • 1
  • A. G. Belous
    • 1
  1. 1.V. I. Vernadskii Institute of General and Inorganic ChemistryNational Academy of Sciences of UkraineKyivUkraine

Personalised recommendations