Advertisement

Theoretical and Experimental Chemistry

, Volume 54, Issue 2, pp 85–91 | Cite as

Mechanochemically Prepared Nanocomposites Based on Polyaniline and Molybdenum and Tungsten Disulfides as Electrode Materials for Supercapacitors

  • O. A. Kozarenko
  • V. S. Dyadyun
  • I. E. Kotenko
  • O. Yu. Posudievsky
  • V. G. Koshechko
  • V. D. Pokhodenko
Article

Hybrid nanocomposites with different composition prepared from polyaniline (PAni) and exfoliated MoS2 and WS2 were prepared by a mechanochemical method and studied as electrodes of symmetrical supercapacitors (SSC). Nanoparticles of MoS2 and WS2 have been found to promote electrochemical reversibility of redox conversion in PAni at high potentials and contribute to the stability of these nanocomposites during prolonged charge-discharge cycling. The specific capacity of such materials can reach 600 F/g and the specific power of SSC can reach ~4.1 kW/kg for specific energy ~23.5 W·h/kg.

Key words

nanocomposites polyaniline molybdenum disulfide tungsten disulfide mechanochemistry supercapacitor 

Notes

This work was carried out with the partial support of the targeted scientific research program of the National Academy of Sciences of Ukraine entitled “New functional materials in chemical manufacturing” as well as a joint program of the Science and Technological Center in Ukraine and National Academy of Sciences of Ukraine “Directed research and developing initiatives.”

References

  1. 1.
    J. R. Miller and P. Simon, Science, 321, No. 5889, 651-652 (2008).CrossRefPubMedGoogle Scholar
  2. 2.
    G. Wang, L. Zhang, and J. Zhang, Chem. Soc. Rev., 41, No. 2, 797-828 (2012).CrossRefPubMedGoogle Scholar
  3. 3.
    A. González, E. Goikolea, J. A. Barrena, and R. Mysyk, Renew. Sustain. Energy Rev., 58, 1189-1206 (2016).CrossRefGoogle Scholar
  4. 4.
    A. Borenstein, O. Hanna, R. Attias, et al., J. Mater. Chem. A, 5, No. 25, 12653-12672 (2017).CrossRefGoogle Scholar
  5. 5.
    J. N. Coleman, M. Lotya, A. O’Neill, et al., Science, 331, No. 6017, 568-571 (2011).CrossRefPubMedGoogle Scholar
  6. 6.
    O. Yu. Posudievsky, O. A. Khazieieva, V. V. Cherepanov, et al., J. Mater. Chem., 1, No. 39, 6411-6415 (2013).Google Scholar
  7. 7.
    O. Yu. Posudievsky, O. A. Khazieieva, A. S. Kondratyuk, et al., Nanotechnology, 29, No. 8, 085704-085715 (2018).Google Scholar
  8. 8.
    A. J. Heeger, N. S. Saricifici, and E. B. Namdas, Semiconducting and Metallic Polymers, Oxford University Press, Oxford (2010).Google Scholar
  9. 9.
    I. Shown, A. Ganguly, L.-C. Chen, and K.-H. Chen, Energy Sci. Eng., 3, No. 1, 2-26 (2015).CrossRefGoogle Scholar
  10. 10.
    H. Wang, J. Ze, and X. Shen, J. Sci. Adv. Mater. Dev., 1, No. 3, 225-255 (2016).Google Scholar
  11. 11.
    D. Vonlanthen, P. Lazarev, K. A. See, et al., Adv. Mater., 26, No. 30, 5095-5100 (2014).CrossRefPubMedGoogle Scholar
  12. 12.
    O. Yu. Posudievsky, O. A. Kozarenko, V. S. Dyadyun, et al., Synth. Met., 162, No. 24, 2206-2211 (2012).CrossRefGoogle Scholar
  13. 13.
    O. Yu. Posudievsky, O. A. Kozarenko, V. S. Dyadyun, et al., Ukrainian Application a2017 07173, Materials for Lithium Battery Cathodes Containing Polyaniline and Nanostructurized Graphite and a Method for Its Application [in Ukrainian], Application July 7, 2017.Google Scholar
  14. 14.
    O. Yu. Posudievsky, O. A. Kozarenko, V. S. Dyadyun, et al., Electrochim. Acta, 109, 866-873 (2013).CrossRefGoogle Scholar
  15. 15.
    O. Yu. Posudievsky, O. A. Kozarenko, V. S. Dyadyun, et al., Electrochim. Acta, 58, 442-448 (2011).CrossRefGoogle Scholar
  16. 16.
    O. Yu. Posudievsky, O. A. Kozarenko, V. S. Dyadryun, et al., J. Power Sources, 196, No. 6, 3331-3341 (2011).CrossRefGoogle Scholar
  17. 17.
    O. Yu. Posudievsky, O. A. Kozarenko, V. S. Dyadyun, et al., Teor. Éksp. Khim., 51, No. 3, 156-162 (2015) [Theor. Exp. Chem., 51, No. 3, 163-169 (2015) (English translation).]Google Scholar
  18. 18.
    O. Yu. Posudievsky, O. A. Kozarenko, V. S. Dyadyun, et al., J. Solid State Electrochem., 19, No. 9, 2733-2740 (2015).CrossRefGoogle Scholar
  19. 19.
    O. A. Kozarenko, O. A. Khazieieva, V. S. Dyadyun, et al., Teor. Éksp. Khim., 51, No. 5, 284-290 (2015) [Theor. Exp. Chem., 51, No. 5, 293-300 (2015) (English translation).]Google Scholar
  20. 20.
    J. P. Pouget, M. E. Józefowicz, A. J. Epstein, et al., Macromolecules, 24, No. 3, 779-789 (1991).Google Scholar
  21. 21.
    A. Ugur, F. Katmis, M. Li, et al., Adv. Mater., 27, No. 31, 4604-4610 (2015).CrossRefPubMedGoogle Scholar
  22. 22.
    A. A. Pud, Synth. Met., 66, No. 1, 1-18 (1994).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • O. A. Kozarenko
    • 1
  • V. S. Dyadyun
    • 1
  • I. E. Kotenko
    • 1
  • O. Yu. Posudievsky
    • 1
  • V. G. Koshechko
    • 1
  • V. D. Pokhodenko
    • 1
  1. 1.L. V. Pysarzhevsky Institute of Physical ChemistryNational Academy of Sciences of UkraineKyivUkraine

Personalised recommendations