Advertisement

Theoretical and Experimental Chemistry

, Volume 54, Issue 2, pp 74–84 | Cite as

Functional Calixarene Nanostructures

Article
  • 1 Downloads

The results of the author studies of functional calixarene nanostructures are summarized. Calixarenes modified by various functional groups were created with receptor properties relative to cations, anions, gases, organic molecules and biomolecules. Calixarene nanostructures have been used to develop extraction and adsorption agents for radionuclides, sensitive elements of chemosensors, porous materials for gas adsorption, stereoselective catalysts for organic reactions, biologically-active compounds, inhibitors of therapeutically-important enzymes, vectors for gene transfection, and fluorescent nanoparticles for cell visualization.

Key words

calixarenes nanostructures supramolecular complexes porous materials catalysts biologically-active compounds 

Notes

This work was carried out with the partial financial support of the directed joint research program of the National Academy of Sciences of Ukraine entitled Fundamental Problems in the Creation of New Compounds and Materials of Chemical Production.

References

  1. 1.
    J. Vicens and J. Harrowfield (eds.), Calixarenes in the Nanoworld, Springer, Dordrecht, The Netherlands (2007).Google Scholar
  2. 2.
    Z. Asfari, V. Bohmer, J. Harrowfield, and J. Vicens (eds.), Calixarenes 2001, Kluwer, Dordrecht, The Netherlands (2001).Google Scholar
  3. 3.
    P. Neri, J. L. Sessler, and M.-X. Wang, Calixarenes and Beyond, Springer, Switzerland (2016).CrossRefGoogle Scholar
  4. 4.
    O. Lukin, M. Vysotsky, and V. Kalchenko, J. Phys. Org. Chem., 14, No. 7, 468-473 (2001).CrossRefGoogle Scholar
  5. 5.
    L. Atamas, O. Klimchuk, V. Rudzevich, et al., J. Supramol. Chem., 2, Nos. 4/5, 421-427 (2002).CrossRefGoogle Scholar
  6. 6.
    O. Klimchuk, L. Atamas, V. Miroshnichenko, et al., J. Incl. Phenom. Macrocycl. Chem., 49, Nos. 1/2, 47-56 (2004).CrossRefGoogle Scholar
  7. 7.
    I. V. Smirnov, M. D. Karavan, T. I. Yefremova, et al., Radiochemistry, 49, No. 5, 482-492 (2007).CrossRefGoogle Scholar
  8. 8.
    S. Kharchenko, A. Drapailo, S. Shishkina, et al., J. Supramol. Chem., 26, Nos. 10-12, 864-872 (2014).CrossRefGoogle Scholar
  9. 9.
    L. I. Rudenko, O. V. Dzhuzha, V. E. Khan, et al., Dop. Nats. Akad. Nauk Ukraini, No. 6, 164-167 (2009).Google Scholar
  10. 10.
    M. S. Lukashova, K. N. Belikov, K. Y. Bryleva, et al., Teor. Éksp. Khim., 49, No. 3, 184-188 (2013) [Theor. Exp. Chem., 49, No. 3, 199-203 (2013) (English translation).]Google Scholar
  11. 11.
    E. M. May, A. Solovyov, Y. Guo, et al., Eur. J. Inorg. Chem., 2016, No. 28, 4542-4545 (2016).CrossRefGoogle Scholar
  12. 12.
    Z. Zhang, A. Drapailo, Yu. Matvieiev, et al., Chem. Commun., 49, No. 75, 8353-8355 (2013).CrossRefGoogle Scholar
  13. 13.
    P. A. Gale, Coord. Chem. Rev., 240, No. 1, 191-221 (2003).CrossRefGoogle Scholar
  14. 14.
    V. I. Boyko, A. V. Yakovenko, I. F. Tsymbal, et al., Mendeleev Commun., 16, No. 1, 24-26 (2006).CrossRefGoogle Scholar
  15. 15.
    A. V. Yakovenko, V. I. Boyko, V. I. Kalchenko, et al., J. Org. Chem., 72, No. 9, 3223-3231 (2007).CrossRefGoogle Scholar
  16. 16.
    O. Ya. Shatursky, L. A. Kasatkina, R. V. Rodik, et al., Org. Biomol. Chem., 12, No. 48, 9811-9821 (2014).CrossRefGoogle Scholar
  17. 17.
    A. V. Ruban, A. B. Rozhenko, V. V. Pirozhenko, et al., Tetrahedron Lett., 54, No. 27, 3496-3499 (2013).CrossRefGoogle Scholar
  18. 18.
    R. Rodik, A. Rozhenko, V. Boyko, et al., Tetrahedron, 63, No. 46, 11451-11457 (2007).CrossRefGoogle Scholar
  19. 19.
    G. V. Oshovsky, D. N. Reinhoudt, and W. Verboom, Angew. Chem. Int. Ed., 46, No. 14, 2366-2393 (2007).CrossRefGoogle Scholar
  20. 20.
    O. I. Kal’chenko and V. I. Kal’chenko, Chromatography in Calixarene Chemistry [in Ukrainian], Naukova Dumka, Kiev (2013).Google Scholar
  21. 21.
    V. Kalchenko, Pure Appl. Chem., 80, No. 7, 1449-1458 (2008).CrossRefGoogle Scholar
  22. 22.
    O. Kalchenko, J. Lipkowski, and V. Kalchenko, Comprehensive Supramolecular Chemistry II, J. L. Atwood (ed.), Vol. 2, Elsevier, Oxford (2017), pp. 239-261.Google Scholar
  23. 23.
    O. Kalchenko, A. Marcinowicz, J. Poznanski, et al., J. Phys. Org. Chem., 18, No. 7, 578-585 (2005).CrossRefGoogle Scholar
  24. 24.
    W. Zielenkiewicz, A. Marcinowicz, J. Poznanski, et al., J. Incl. Phenom. Macrocycl. Chem., 55, Nos. 1/2, 11-19 (2006).CrossRefGoogle Scholar
  25. 25.
    W. Zielenkiewicz, A. Marcinowicz, S. Cherenok, et al., Supramol. Chem., 18, No. 3, 167-176 (2006).CrossRefGoogle Scholar
  26. 26.
    L. V. Tsymbal, Ya. D. Lampeka, V. I. Boyko, et al., Cryst. Eng. Commun., 16, No. 18, 3707-3711 (2014).CrossRefGoogle Scholar
  27. 27.
    V. I. Kalchenko, I. A. Koshets, E. P. Matsas, et al., Mater. Sci., 20, No. 3, 73-88 (2002).Google Scholar
  28. 28.
    I. A. Koshets, Z. I. Kazantseva, A. E. Belyaev, et al., Sensors Actuators B, 140, 104-108 (2009).CrossRefGoogle Scholar
  29. 29.
    I. W. Rangelow, T. Ivanov, Y. Sarov, et al., Alternative Lithographic Technologies II (SPIE Proc. Article), 7637 (2010).Google Scholar
  30. 30.
    V. Boyko, R. Rodik, O. Danylyuk, et al., Tetrahedron, 61, No. 52, 12282-12287 (2005).CrossRefGoogle Scholar
  31. 31.
    G. A. Kostin, A. O. Borodin, V. G. Torgov, et al., J. Incl. Phenom. Macrocycl. Chem., 59, Nos. 1/2, 45-52 (2007).CrossRefGoogle Scholar
  32. 32.
    J.-M. Ha, A. Katz, A. B. Drapailo, et al., J. Phys. Chem. C, 113, No. 4, 1137-1142 (2009).CrossRefGoogle Scholar
  33. 33.
    V. I. Boiko, V. I. Kal’chenko, and A. A. Esipenko, Chiral Calixarenes [in Russian], LAP LAMBERT Acad. Publ., Saarbrücken (2014).Google Scholar
  34. 34.
    Yu. Matvieiev, A. Solovyov, S. Shishkina, et al., Supramol. Chem., 26, Nos. 10-12, 825-835 (2014).CrossRefGoogle Scholar
  35. 35.
    P. Nandi, Yu. I. Matvieiev, A. Katz, et al., J. Catal., 284, No. 1, 42-49 (2011).CrossRefGoogle Scholar
  36. 36.
    A. Karpus, O. Yesypenko, V. Boiko, et al., Eur. J. Org. Chem., 2016, No. 20, 3386-3394 (2016).CrossRefGoogle Scholar
  37. 37.
    J. M. Notestein, L. R. Andrini, V. I. Kalchenko, et al., J. Am. Chem. Soc., 129, No. 5, 1122-1131 (2007).CrossRefGoogle Scholar
  38. 38.
    R. V. Rodik, V. I. Boyko, and V. I. Kalchenko, Curr. Med. Chem., 16, No. 13, 1630-1655 (2009).CrossRefGoogle Scholar
  39. 39.
    R. V. Rodik, V. I. Boyko, and V. I. Kalchenko, Frontiers in Medicinal Chemistry, A. B. Reitz, A. Rahman, and M. I. Choudhary (eds.), Vol. 8, Bentham Sci. Publ. (2016), pp. 206-301.Google Scholar
  40. 40.
    M. A. Klyachina, V. I. Boyko, A. V. Yakovenko, et al., J. Incl. Phenom. Macrocycl. Chem., 60, Nos. 1/2, 121-137 (2008).Google Scholar
  41. 41.
    S. V. Komisarenko, S. O. Kosterin, E. V. Lugovskoy, et al., Ligands: Synthesis, Characterization and Role in Biotechnology, P. Gawriszewska and P. Smolenski (eds.), Nova Sci. Publ. Inc., New York (2014), pp. 67-116.Google Scholar
  42. 42.
    R. D. Labyntseva, O. V. Bevza, K. V. Lytvyn, et al., Ukr. Biochem. J., 88, No. 5, 48-61 (2016).CrossRefGoogle Scholar
  43. 43.
    A. I. Vovk, L. A. Kononets, V. Yu. Tanchuk, et al., Bioorg. Med. Chem. Lett., 20, 483-487 (2010).CrossRefGoogle Scholar
  44. 44.
    V. V. Trush, S. O. Cherenok, V. Yu. Tanchuk, et al., Bioorg. Med. Chem. Lett., 23, 5619-5623 (2013).CrossRefGoogle Scholar
  45. 45.
    V. V. Trush, S. G. Kharchenko, V. Yu. Tanchuk, et al., Org. Biomol. Chem., 13, No. 33, 8803-8806 (2015).Google Scholar
  46. 46.
    V. V. Trush, S. O. Cherenok, V. Yu. Tanchuk, et al., Chem. Biol. Lett., 2, No. 1, 1-5 (2015).Google Scholar
  47. 47.
    A. I. Vovk, V. I. Kalchenko, S. O. Cherenok, et al., Org. Biomol. Chem., 2, No. 21, 3162-3166 (2004).CrossRefGoogle Scholar
  48. 48.
    S. Cherenok, A. Vovk, I. Muravyova, et al., Org. Lett., 8, No. 4, 549-552 (2006).CrossRefGoogle Scholar
  49. 49.
    E. V. Lugovskoy, P. G. Gritsenko, T. A. Koshel, et al., FEBS J., 278, No. 8, 1244-1251 (2011).CrossRefGoogle Scholar
  50. 50.
    V. O. Chernyshenko, D. S. Korolova, V. E. Dosenko, et al., Pharm Anal. Acta, 6, No. 8, 1-5 (2015).Google Scholar
  51. 51.
    E. Ukhatskaya, S. V. Kurkov, M. A. Hjálmarsdóttir, et al., Int. J. Pharm., 458, No. 1, 25-30 (2013).CrossRefGoogle Scholar
  52. 52.
    I. O. Melezhyk, R. V. Rodik, N. V. Iavorska, et al., Anti-Infective Agents, 13, No. 1, 87-94 (2015).CrossRefGoogle Scholar
  53. 53.
    V. K. Kibirev, T. V. Osadchuk, R. V. Rodik, et al., Ukr. Biochem. J., 87, No. 3, 31-36 (2015).CrossRefGoogle Scholar
  54. 54.
    R. V. Rodik, A. S. Klymchenko, N. Jain, et al., Chem. Eur. J., 17, No. 20, 5526-5538 (2011).CrossRefGoogle Scholar
  55. 55.
    R. V. Rodik, A.-S. Anthony, V. I. Kalchenko, et al., New J. Chem., 39, No. 3, 1654-1664 (2015).CrossRefGoogle Scholar
  56. 56.
    I. Shulov, R. V. Rodik, Y. Arntz, et al., Angew. Chem., 55, No. 51, 15884-15888 (2016).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Organic ChemistryNational Academy of Sciences of UkraineKyivUkraine

Personalised recommendations