Skip to main content
Log in

Structural Functional Design of Catalysts for Oxidation–Reduction Processes Involving Alcohols and Hydrocarbons

  • Published:
Theoretical and Experimental Chemistry Aims and scope

The results from structural functional design of nanocomposite catalysts for selective reduction of nitrogen oxides, oxidative conversion of C1-C4 alkanes, and production of butadiene from ethanol are summarized. The role of the components of the catalytic compositions and modifying additives in the manifestation of oxidation–reduction and acid–base characteristics of the surface and their optimization for the achievement of high selectivity and productivity of the catalysts were demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

References

  1. K. Skalska, J. S. Miller, and S. Ledakowicz, Sci. Total Environ., 408, 3976-3989 (2010).

    Article  CAS  Google Scholar 

  2. S. N. Orlik, T. V. Mironyuk, and T. M. Boichuk, Teor. Éksp. Khim., 48, No. 2, 67-87 (2012). [Theor. Exp. Chem., 48, No. 2, 73-97 (2012) (English translation).]

  3. B. Guan, R. Zhan, H. Lin, and Z. Huang, Appl. Therm. Eng., 66, 395-414 (2014).

    Article  CAS  Google Scholar 

  4. M. Fu, C. Li, P. Lu, et al., Catal. Sci. Technol., 4, 14-25 (2014).

    Article  CAS  Google Scholar 

  5. R. Mrad, A. Aissat, R. Cousin. et al., Appl. Catal. A, 504, 542-548 (2015).

    Article  CAS  Google Scholar 

  6. N. O. Popovych, S. O. Soloviev, and S. M. Orlyk, Teor. Éksp. Khim., 52, No. 3, 133-151 (2016). [Theor. Exp. Chem., 52, No. 3, 133-151 (2016) (English translation).]

  7. P. Kyriienko, N. Popovych., S. Soloviev, et al., Appl. Catal. B., 140/141, 691-699 (2013).

    Article  Google Scholar 

  8. N. Popovych, P. Kirienko, S. Soloviev, and S. Orlyk, Catal. Today, 191, No. 1, 38-41 (2012).

    Article  CAS  Google Scholar 

  9. J. Li, R. Ke, W. Li, and J. Hao, Catal. Today, 139, No. 1, 49-58 (2008).

    Article  CAS  Google Scholar 

  10. S. O. Soloviev, P. I. Kirienko, N. O. Popovich, and Ya. P. Kurilets, “Method of preparation of catalyst for purification of gas mixtures from nitrogen oxides,” Ukrainian Patent 85669, MPK B 01 J 23/50, B 01 D 53/54 (2006.01), Publ. Nov. 25, 2013, Byul. No. 22.

  11. M. R. Kantserova and S. N. Orlik, Kinet. Katal., 48, No. 3, 438-453 (2007).

    Article  Google Scholar 

  12. M. R. Kantserova, S. N. Orlik, and S. A. Solov’ev, “Catalyst for deep oxidation of hydrocarbons,” Ukrainian Patent 77552, MPK B 01 J 21/04, C 04 B 35/00 (2006.01), Publ. Feb. 25, 2013, Byul. No. 4.

  13. M. R. Kantserova, S. N. Orlik, and A. V. Shvets, Katal. prom., No. 1, 8-14 (2014).

  14. Y. M. Choi, C. Compson, M. C. Lin, et al., J. Alloys Compd., 427, Nos. 1/2, 25-29 (2007).

    Article  CAS  Google Scholar 

  15. S. Park, R. J. Gorte, and J. M. Vohs, Appl. Catal. A, 200, Nos. 1/2, 55-61 (2000).

    Article  CAS  Google Scholar 

  16. S. N. Orlik and T. K. Shashkova, Kinet. Katal., 55, No. 5, 628-641 (2014).

    Google Scholar 

  17. M. R. Kantserova, V. I. Chedryk, and S. N. Orlyk, Teor. Éksp. Khim., 50, No. 6, 375-380 (2014). [Theor. Exp. Chem., 50, No. 6, 378-383 (2015) (English translation).]

  18. R. J. Gorte and J. M. Vohs, J. Catal., 216, 477-486 (2003).

    Article  CAS  Google Scholar 

  19. L. Pino, A. Vita, and F. Cipiti, Catal. Lett., 122, 121-130 (2008).

    Article  CAS  Google Scholar 

  20. K. Polychronopoulou, C. Kalamaras, and A. Efstatiou, Recent Patents on Materials Science, 4, 1-24 (2011).

    Google Scholar 

  21. N. Laosiripojana, W. Sangtongkitcharoen, and S. Assabumrungrat, Fuel, 85, 323-332 (2006).

    Article  CAS  Google Scholar 

  22. F. Sago, S. Fukuda, K. Sato, et al., Int. J. Hydrogen Energy, 34, 8046-8052 (2009).

    Article  CAS  Google Scholar 

  23. K. Eguchi, K. Tanaka, T. Matsui, and R. Kikuchi, Catal. Today, 146, 154-159 (2009).

    Article  CAS  Google Scholar 

  24. S.-S. S. Lim, H.-J. J. Lee, D.-J. J. Moon, et al., Chem. Eng. J., 152, 220-226 (2009).

    Article  CAS  Google Scholar 

  25. K. Sato, K. Nagaoka, H. Nishiguchi, and Y. Takita, Int. J. Hydrogen Energy, 34, 333-342 (2009).

    Article  CAS  Google Scholar 

  26. S. M. Orlyk, S. O. Solov’ev, A. Yu. Kapran, Ie. V. Gubareni, Hydrogen in Alternative Power Engineering and Alternative Energy for New Technologies [in Ukrainian], Vydavnytstvo KIM, Kyiv (2015), pp. 48-54.

  27. K. Sohlberg, S. T. Pantelides, and S. J. Pennycook, Surface Sci., 470, L88-L92 (2000).

    Article  CAS  Google Scholar 

  28. S. Orlyk, S. Soloviev, A. Kapran, et al., Advances in Engineering Research, V.M. Petrova (ed.), Nova Sci. Publ., New York (2015), Vol. 10, pp. 1-52.

  29. E. V. Gubareni, S. A. Solov’ev, S. N. Orlik, and Ya. P. Kurilets, “Nickel-containing catalyst for tri-reforming of methane”, Ukrainian Patent 108461,MPKB 01 J 23/755, B 01 J 35/04 (2006.01), Publ. July 25, 2016, Byul. No. 14.

  30. Y.-A. Zhu, D. Chen, X.-G. Zhou, and W.-K. Yuan, Catal. Today, 148, 260-267 (2009).

    Article  CAS  Google Scholar 

  31. C. Angelici, B. M. Weckhuysen, and P. C. A. Bruijnincx, ChemSusChem., 6, 1595-1614 (2013).

    Article  CAS  Google Scholar 

  32. J. A. Posada, A. D. Patel, A. Roes, et al., Bioresour. Technol., 135, 490-499 (2013).

    Article  CAS  Google Scholar 

  33. J. Sun and Y. Wang, ACS Catal., 4, 1078-1090 (2014).

    Article  CAS  Google Scholar 

  34. D. Cespi, F. Passarini, I. Vassura, and F. Cavani, Green Chem., 18, 1625-1638 (2016).

    Article  CAS  Google Scholar 

  35. E. V. Makshina, M. Dusselier, W. Janssens, et al., Chem. Soc. Rev., 43, 7917-7953 (2014).

    Article  CAS  Google Scholar 

  36. C. Angelici, M. E. Z. Velthoen, B. M. Weckhuysen, and P. C. A. Bruijnincx, Catal. Sci. Technol., 5, 2869-2879 (2015).

    Article  CAS  Google Scholar 

  37. O. V. Larina, P. I. Kyriienko, V. V. Trachevskii, et al., Teor. Éksp. Khim., 51, No. 6, 378-384 (2015). [Theor. Exp. Chem., 51, No. 6, 387-393 (2016) (English translation).]

  38. O. V. Larina, P. I. Kyriienko, and S. O. Soloviev, Catal. Lett., 145, 1162-1168 (2015).

    Article  CAS  Google Scholar 

  39. P. I. Kirienko, O. V. Larina, and S. O. Soloviev, “Method for obtaining the catalyst for synthesis of 1,3-butadiene from ethanol,” Ukrainian Patent 102388, MPK (2015.01) B 01 J 21/06, B 01 J 13/00, C 07 C 11/167 (2006.01), Publ. Oct. 26, 2015, Byul. No. 20.

  40. P. I. Kyriienko, O. V. Larina, S. O. Soloviev, et al., Catal. Commun., 77, 123-126 (2016).

    Article  CAS  Google Scholar 

  41. P. I. Kyriienko, O. V. Larina, S. O. Soloviev, et al., ACS Sustain. Chem. Eng., 5. 2075-2083 (2017).

    Article  CAS  Google Scholar 

Download references

The author expresses his gratitude to N. A. Popovich, M. R. Kantserova, O. V. Larina, and E. V. Gubareni for useful discussion of the results and assistance in the presentation of the illustrative material.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. N. Orlyk.

Additional information

Translated from Teoreticheskaya i Éksperimental’naya Khimiya, Vol. 53, No. 5, pp. 296-305, September-October, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Orlyk, S.N. Structural Functional Design of Catalysts for Oxidation–Reduction Processes Involving Alcohols and Hydrocarbons. Theor Exp Chem 53, 315–326 (2017). https://doi.org/10.1007/s11237-017-9531-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11237-017-9531-9

Key words

Navigation