Skip to main content
Log in

Effect of the Mechanochemical Preparation on the Fractional Composition and Spectral Characteristics of Graphene Oxide

  • Published:
Theoretical and Experimental Chemistry Aims and scope

Mechanochemically prepared graphene oxide GO|mc consists of a fraction of low-molecular-weight debris and a fraction of rather large graphene sheets (bwGO|mc, bw = base-washed). The content of the low-molecular-weight fraction in dispersions of GO|mc was found to be higher than for GO dispersions prepared by chemical methods. GO|mc exhibited photoluminescence in the visible region of the spectrum, the main contribution to which is made by the debris fraction. Conjugated carbon bonds are retained in the debris, which distinguishes this material from analogs synthesized by the chemical oxidation of graphite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. K. Krishnamoorthy, R. Mohan, S. J. Kim, et al., Appl. Phys. Lett., 98, No. 24, 99-102 (2011).

    Article  Google Scholar 

  2. Y. Shao, H. Wang, Q. Zhang, et al., NPG Asia Mater., 6, No. 8, e119 (2014).

    Article  CAS  Google Scholar 

  3. B. R. Lee, J. J. Y. Kim, D. Kang, et al., ACS Nano, 6, No. 4, 2984-2991 (2012).

    Article  CAS  Google Scholar 

  4. H. He, X. Yu, Y. Wu, et al., RSC Adv., 5, No. 49, 39630-39634 (2015).

    Article  CAS  Google Scholar 

  5. D. Dinda, A. Gupta, B. Shaw, et al., ACS Appl. Mater. Interfaces, 6, 10722-10728 (2014).

    Article  CAS  Google Scholar 

  6. A. Y. S. Eng, C. K. Chua, and M. Pumera, Phys. Chem. Chem. Phys., 18, No. 14, 9673-9681 (2016).

    Article  CAS  Google Scholar 

  7. W. Ai, Z. Du, Z. Fan, et al., Carbon, 76, 148-154 (2014).

    Article  CAS  Google Scholar 

  8. S. Zhu, J. Zhang, C. Qiao, et al., Chem. Commun. (Camb), 47, No. 24, 6858-6860 (2011).

    Article  CAS  Google Scholar 

  9. T. S. Sreeprasad, S. M. Maliyekkal, K. Deepti, et al., ACS Appl. Mater. Interfaces, 3, 2643-2654 (2011).

    Article  CAS  Google Scholar 

  10. H. L. Poh, F. Šanìk, A. Ambrosi, et al., Nanoscale, 4, No. 11, 3515-3522 (2012).

    Article  CAS  Google Scholar 

  11. J. P. Rourke, P. A. Pandey, J. J. Moore, et al., Angew. Chem., 123, No. 14, 3231-3235 (2011).

    Article  Google Scholar 

  12. H. R. Thomas, S. P. Day, W. E. Woodruff, et al., Chem. Mater., 25, No. 18, 3580-3588 (2013).

    Article  CAS  Google Scholar 

  13. Z. Guo, S. Wang, G. Wang, et al., Carbon, 76, 203-211 (2014).

    Article  CAS  Google Scholar 

  14. I. Rodriguez-Pastor, G. Ramos-Fernandez, H. Varela-Rizo, et al., Carbon, 84, No. 1, 299-309 (2015).

    Article  CAS  Google Scholar 

  15. O. Yu. Posudievsky, O. A. Kozarenko, O. A. Khazieieva, et al., J. Mater. Chem. A, 1, No. 22, 6658-6663 (2013).

    Article  CAS  Google Scholar 

  16. R. A. Meyers (ed.), Encyclopedia of Analytical Chemistry, John Wiley & Sons, Chichester, Great Britain (2000).

    Google Scholar 

  17. M. Acik, G. Lee, C. Mattevi, et al., Nat. Mater., 9, No. 10, 840-845 (2010).

    Article  CAS  Google Scholar 

  18. X. Mei and J. Ouyang, Carbon, 49, No. 15, 5389-5397 (2011).

    Article  CAS  Google Scholar 

  19. A. Baes and P. Bloom, Soil Sci. Soc. Am. J., 54, 1248-1254 (1990).

    Article  CAS  Google Scholar 

  20. G. Bepete, A. Pénicaud, C. Drummond, and E. Anglaret, J. Phys. Chem. C, 120, No. 49, 28204-28214 (2016).

    Article  CAS  Google Scholar 

  21. S. Kim and S. Ryu, Carbon, 100, 283-290 (2016).

    Article  CAS  Google Scholar 

  22. M. Bruna, A. K. Ott, M. Ijäs, et al., ACS Nano, 8, No. 7, 7432-7441 (2014).

    Article  CAS  Google Scholar 

  23. H. R. Thomas, C. Vallés, R. J. Young, et al., J. Mater. Chem. C, 1, No. 2, 338-342 (2013).

    Article  CAS  Google Scholar 

  24. D. Du, H. Song, Y. Nie, et al., J. Phys. Chem. C, 119, No. 34, 20085-20090 (2015).

    Article  CAS  Google Scholar 

  25. G. Rajender and P. K. Giri, J. Mater. Chem. C, 4, No. 46, 10852-10865 (2016).

    Article  CAS  Google Scholar 

Download references

This work was supported by the Targeted Research & Development Initiatives of the Science and Technology Center in Ukraine and the National Academy of Sciences of Ukraine and Targeted Comprehensive Fundamental Research Program of the National Academy of Sciences of Ukraine “Fundamental problems of creating new nanomaterials and nanotechnologies.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Yu. Posudievsky.

Additional information

Translated from Teoreticheskaya i Éksperimental’naya Khimiya, Vol. 53, No. 2, pp. 88-93, March-April, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Posudievsky, O.Y., Khazieieva, O.A., Kozarenko, O.A. et al. Effect of the Mechanochemical Preparation on the Fractional Composition and Spectral Characteristics of Graphene Oxide. Theor Exp Chem 53, 93–99 (2017). https://doi.org/10.1007/s11237-017-9504-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11237-017-9504-z

Key words

Navigation