Skip to main content
Log in

Spectral Characteristics and Electronic Conductivity of Composites Obtained by Reaction of Iodine Vapor with Isostructural Zinc- and Nickel-Containing Metal–Organic Frameworks

  • Published:
Theoretical and Experimental Chemistry Aims and scope

It was shown that reaction of the isostructural metal–organic frameworks formed by cationic macrocyclic complexes of nickel or zinc and 4,4′-diphenyldicarboxylate or 4,4′-oxybisbenzoate with iodine vapor leads to the formation of composites in which the iodine content is substantially higher than in the case of the materials obtained by sorption from solutions. It was established that in the case of interaction of the nickel-containing MOFs with iodine the metal ion is oxidized with the formation of nickel(III), leading to increase of their sorption capacity compared with the zinc-containing analogs. It was shown that the composites based on zinc compounds have higher electronic conductivity than the analogous compounds of nickel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. L. R. Mac-Gillivray and C. M. Lukehart (eds.), Metal–Organic Framework Materials, John Wiley and Sons, Hoboken (2014).

    Google Scholar 

  2. L. Sun, M. G. Campbell, and M. Dinca, Angew. Chem. Int. Ed., 55, No. 11, 3566-3579 (2016).

    Article  CAS  Google Scholar 

  3. R. Kaur, K.-H. Kim, A. K. Paul, and A. Deep, J. Mater. Chem. A, 4, No. 11, 3991-4002 (2016).

    Article  CAS  Google Scholar 

  4. J. Lei, R. Qian, P. Ling, et al., TrAC, Trends Anal. Chem., 58, 71-78 (2014).

    CAS  Google Scholar 

  5. A. Morozana and F. Jaouen, Energy Environ. Sci., 5, No. 11, 9269-9290 (2012).

    Article  Google Scholar 

  6. M. D. Allendorf, M. E. Foster, F. Léonard, et al, J. Phys. Chem. Lett., 6, No. 7, 1182-1195 (2015).

    Article  CAS  Google Scholar 

  7. D. Kim, D. W. Kim, W. G. Hong, and A. Coskun, J. Mater. Chem. A, 4, No. 20, 7710-7717 (2016).

    Article  CAS  Google Scholar 

  8. M.-H. Zeng, Q.-X. Wang, Y.-X. Tan, et al., J. Am. Chem. Soc., 132, No. 8, 2561-2563 (2010).

    Article  CAS  Google Scholar 

  9. M.-H. Zeng, Z. Yin, Y.-X. Tan, et al., J. Am. Chem. Soc., 136, No. 12, 4680-4688 (2014).

    Article  CAS  Google Scholar 

  10. C. Falaise, C. Volkringer, J. Facqueur, et al., Chem. Commun., 49, No. 87, 10320-10322 (2013).

    Article  CAS  Google Scholar 

  11. S. Horike, M. Sugimoto, K. Kongpatpanich, et al., J. Mater. Chem. A, 1, No. 11, 3675-3679 (2013).

    Article  CAS  Google Scholar 

  12. D. Y. Lee, E.-K. Kim, N. K. Shrestha, et al., ACS Appl. Mater. Interfaces, 7, No. 33, 18501-18507 (2015).

    Article  CAS  Google Scholar 

  13. A. G. Lappin, Advances in Inorganic Chemistry and Radiochemistry, A. G. Sykes (ed.), Acad. Press, San Diego (1988), Vol. 32, pp. 241-295.

  14. H. Kim and M. P. Suh, Inorg. Chem., 44, No. 4, 810-812 (2005).

    Article  CAS  Google Scholar 

  15. Y. E. Cheon and M. P. Suh, Chem. Eur. J., 14, No. 13, 3961-3967 (2008).

    Article  CAS  Google Scholar 

  16. I. L. Andriichuk, L. V. Tsymbal, and Ya. D. Lampeka, Teor. Éksp. Khim., 45, No. 5, 295-299 (2009). [Theor. Exp. Chem., 45, No. 5, 308-312 (2009) (English translation).]

  17. I. L. Andriichuk, L. V. Tsymbal, and Ya. D. Lampeka, Teor. Éksp. Khim., 45, No. 4, 239-244 (2009). [Theor. Exp. Chem., 45, No. 4, 252-257 (2009) (English translation).]

  18. M. P. Suh, H. R. Moon, E. Y. Lee, et al., J. Am. Chem. Soc., 128, No. 14, 4710-4718 (2006).

    Article  CAS  Google Scholar 

  19. R. I. Gurtovyi, L. V. Tsymbal, R. N. Kuz’min, et al., Teor. Éksp. Khim., 52, No. 2, 103-108 (2016). [Theor. Exp. Chem., 52, No. 2, 104-110 (2016) (English translation).]

  20. Q.-K. Liu, J.-P. Maa, and Y. B. Dong, Chem. Commun., 47, No. 25, 7185-7187 (2011).

    Article  CAS  Google Scholar 

  21. M. Arici, O. Z. Yeşilel, M. Taş, and H. Demiral, Inorg. Chem., 54, No. 23, 11283-11291 (2015).

    Article  CAS  Google Scholar 

  22. R. I. Gurtovyi, L. V. Tsymbal, S. Shova, and Y. D. Lampeka, Teor. Éksp. Khim., 52, No. 1, 40-46 (2016). [Theor. Exp. Chem., 52, No. 1, 44-50 (2016) (English translation).]

  23. Ya. D. Lampeka, L. V. Tsymbal, A. V. Barna, et al., Dalton Trans., 41, No. 14, 4118-4125 (2012).

    Article  CAS  Google Scholar 

  24. A. L. Spek, PLATON, AMultipurpose Crystallographic Tool, Vol. 1.16, Utrecht University, Utrecht, The Netherlands (2001).

  25. G. Wirnsberger, H. P. Fritzer, A. Popitsch, et al., Angew. Chem. Int. Ed. Engl., 35, Nos. 23/24, 2777-2779 (1996).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Teoreticheskaya i Éksperimental’naya Khimiya, Vol. 52, No. 5, pp. 309-315, September-October, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gurtovyi, R.I., Tsymbal, L.V., Shova, S. et al. Spectral Characteristics and Electronic Conductivity of Composites Obtained by Reaction of Iodine Vapor with Isostructural Zinc- and Nickel-Containing Metal–Organic Frameworks. Theor Exp Chem 52, 310–317 (2016). https://doi.org/10.1007/s11237-016-9483-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11237-016-9483-5

Key words

Navigation