Theoretical and Experimental Chemistry

, Volume 51, Issue 6, pp 375–379 | Cite as

Influence of Laser Exposure on the Physical Properties of Nano V2O5 Films Grown By Thermal Evaporation

  • Amanullah Fatehmulla
  • M. Aslam
  • W. A. Farooq
  • Syed Mansoor Ali
  • M. Atif
  • A. M. AlDhafiri
  • F. Yakuphanoglu
Article
  • 135 Downloads

It is shown that the nanostructures of vanadium pentoxide (V2O5) obtained by laser treatment of films grown by thermal evaporation differ significantly in their properties from analogues based on V2O5. Results of XRD and SEM studies show the increase in grain size with the increasing intensity of the laser radiation, and spectral analysis data indicate a decrease in the band gap.

Key words

thermal evaporation nano V2O5 laser irradiation red shift bandgap tailoring 

References

  1. 1.
    Ch. Prameela, M. Anjaiah, K. K. Murthy, and K Srinivasarao, Indian J. Pure Appl. Phys., 51, 563-568 (2013).Google Scholar
  2. 2.
    K. Sieradzka, D. Wojcieszak, D. Kaczmarek, et al., Opt. Appl., 41, No. 2, 463-469 (2011).Google Scholar
  3. 3.
    S. Beke, Thin Solid Films, 519, 1761-1771 (2011).CrossRefGoogle Scholar
  4. 4.
    R. Santos, J. Loureiro, A. Nogueira, et al., Appl. Surf. Sci., 282, 590-594 (2013).CrossRefGoogle Scholar
  5. 5.
    S. Beke, S. Giorgio, L. Kõrösi, et al., Thin Solid Films, 516, 4659-4664 (2008).CrossRefGoogle Scholar
  6. 6.
    G. J. Fang, Z. L. Liu, Y. Q. Wang, et al., J. Phys. D: Appl. Phys., 33, 3018 (2000).CrossRefGoogle Scholar
  7. 7.
    M. C. Rao, K. Ravindranadh, A. Kasturi, and M. S. Shekhawat, Res. J. Recent Sci., 2, No. 4, 67-73 (2013).Google Scholar
  8. 8.
    A. D. Raja, T. Pazhanivel, P. S. Kumar, et al., Curr. Appl. Phys., 10, 531-537 (2010).CrossRefGoogle Scholar
  9. 9.
    I. Raible, M. Burghard, U. Schlecht, et al., Sensors Actuators B, 106, 730-735 (2005).CrossRefGoogle Scholar
  10. 10.
    S.-H. Lee, H. M. Cheong, M. J. Seong, et al., J. Appl. Phys., 92, No. 4, 1893-1897 (2002).CrossRefGoogle Scholar
  11. 11.
    S. Guimond, J. M. Sturm, D. Göbke, et al., J. Phys. Chem. C, 112, 11835-11846 (2008).CrossRefGoogle Scholar
  12. 12.
    Y. J. Park, N.-G. Park, K. S. Ryu, et al., Bull. Korean Chem. Soc., 22, No. 9, 1015-1018 (2001).CrossRefGoogle Scholar
  13. 13.
    M. S. B. de Castro, C. L. Ferreira, and R. R. de Avillez, Infrared Phys. Technol., 60, 103-107 (2013).CrossRefGoogle Scholar
  14. 14.
    Y. Ningyi, L. Jinhua, and L. Chenglu, Appl. Surf. Sci., 191, Nos. 1-4, 176-180 (2002).CrossRefGoogle Scholar
  15. 15.
    O. Monfort, T. Roch, L. Satrapinskyy, et al., Appl. Surf. Sci., 322, 21-27 (2014).CrossRefGoogle Scholar
  16. 16.
    D. Alamarguy, J. E. Castle, N. Ibris, and A. M. Salv, Surf. Interface Anal., 38, 801-804 (2006).CrossRefGoogle Scholar
  17. 17.
    K. N. Navaneetha and E. G. Seebauer, Thin Solid Films, 519, No. 11, 3663-3668 (2011).CrossRefGoogle Scholar
  18. 18.
    J. Lu, M. Hu, Y. Tian, et al., J. Nanosci. Nanotechnol., 13, 914-918 (2013).CrossRefGoogle Scholar
  19. 19.
    D. Barreca, L. Armelao, F. Caccavale, et al., Chem. Mater., 12, No. 1, 98-103 (2000).CrossRefGoogle Scholar
  20. 20.
    Y. Iida, Y. Kaneko, and Y. Kanno, J. Mater. Proc. Technol., 197, 261-267 (2008).CrossRefGoogle Scholar
  21. 21.
    C. V. Ramana, R. J. Smith, O. M. Hussain, et al., Surf. Interface Anal., 37, 406-411 (2005).CrossRefGoogle Scholar
  22. 22.
    D. Bäuerle, Laser Processing and Chemistry, Springer, Heidelberg (1996).CrossRefGoogle Scholar
  23. 23.
    S. Beke, L. Korosi, S. Papp, et al., Appl. Surf. Sci., 254, 1363 (2007).CrossRefGoogle Scholar
  24. 24.
    S. Beke, L. Korosi, S. Papp, et al., Appl. Surf. Sci., 255, 9779 (2009).CrossRefGoogle Scholar
  25. 25.
    P. Schwendt, Collect. Czech. Chem. Commun., 48, 284 (1983).CrossRefGoogle Scholar
  26. 26.
    V. P. Filonenko, M. Sundberg, P.-E. Werner, and I. P. Zibrov, Acta Crystallogr. B, 60, 375-381 (2004).CrossRefGoogle Scholar
  27. 27.
    H. Soni, M. Chawda, and D. Bodas, Mater. Lett., 63, 767-769 (2009).CrossRefGoogle Scholar
  28. 28.
    R. Enjalbert and J. Galy, Acta Crystallogr. C, 42, 1467-1469 (1986).CrossRefGoogle Scholar
  29. 29.
    J. L. Li and M. Gu, IEEE J. Sel. Top. Quantum Electron., 16, 4 (2010).CrossRefGoogle Scholar
  30. 30.
    A. Ashour, M. A. Kaid, N. Z. El-Sayed, and A. A. Ibrahim, Appl. Surf. Sci., 252, 7844 (2006).CrossRefGoogle Scholar
  31. 31.
    A. Kumar, P. Singh, N. Kulkarni, and D. Kaur, Thin Solid Films, 516, 912-918 (2008).CrossRefGoogle Scholar
  32. 32.
    L.-J. Meng, R. A. Silva, H.-N. Cui, et al., Thin Solid Films, 515, 195-200 (2006).CrossRefGoogle Scholar
  33. 33.
    M. Abdullah, K. Gary, C. Low, and R. W. Matthews, J. Phys. Chem., 94, 6820 (1990).CrossRefGoogle Scholar
  34. 34.
    J. Yu, X. Zhao, and Q. Zhao, Thin Solid Films, 379, 7 (2000).CrossRefGoogle Scholar
  35. 35.
    T. van Buuren, L. N. Dinh, L. L. Chase, et al., Phys. Rev. Lett., 80, 3803 (1998).CrossRefGoogle Scholar
  36. 36.
    V. Petkov, P. Y. Zavalij, S. Lutta, et al., Phys. Rev. B, 69, 085410 (2004).CrossRefGoogle Scholar
  37. 37.
    Z. J. Zhang, Y. Zhao, and M. M. Zhu, Appl. Phys. Lett., 88, 033101 (2006).CrossRefGoogle Scholar
  38. 38.
    M. M. Zhu, Z. J. Zhang, and W. Miao, Appl. Phys. Lett., 89, 021915 (2006).CrossRefGoogle Scholar
  39. 39.
    N. Kenny, J. Phys. Chem. Solids, 27, 1237 (1966).CrossRefGoogle Scholar
  40. 40.
    P. Clauws and J. Vennik, Phys. Status Solidi B, 66, 553 (1974).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Amanullah Fatehmulla
    • 1
  • M. Aslam
    • 1
  • W. A. Farooq
    • 1
  • Syed Mansoor Ali
    • 1
  • M. Atif
    • 1
  • A. M. AlDhafiri
    • 1
  • F. Yakuphanoglu
    • 2
  1. 1.Department of Physics & Astronomy, College of ScienceKing Saud UniversityRiyadhSaudi Arabia
  2. 2.Physics DepartmentFirat UniversityElazýðTurkey

Personalised recommendations