Skip to main content
Log in

Oxygen Reduction Nanocomposite Electrocatalysts Based on Polyindole, Cobalt, and Acetylene Black

  • Published:
Theoretical and Experimental Chemistry Aims and scope

Polyindole (PIn), cobalt, and acetylene black (C) were used to obtain non-precious-metal nanocomposite electrocatalysts for the oxygen reduction reaction (ORR). We studied the composition, structure, and electrochemical properties of these materials. The PIn-Co/Cpyr obtained with treatment at elevated temperature, have much greater electrocatalytic activity in ORR in 0.05 M sulfuric acid in comparison with nonpyrolyzed (metal–polymer composite) PIn-Co/C, which may be attributed to differences in the catalytically-active sites in these composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. A. G. MacDiarmid, Angew. Chem. Int. Ed., 40, No. 14, 2581-2590 (2001).

    Article  CAS  Google Scholar 

  2. A. Malinauskas, J. Malinauskiene, and A. Ramanavièius, Nanotechnology, 16, No. 1, R51-R62 (2005).

    Article  CAS  Google Scholar 

  3. B. I. Podlovchenko and V. N. Andreev, Usp. Khim., 71, No. 10, 950-965 (2002).

    Article  Google Scholar 

  4. V. G. Khomenko, V. Z. Barsukov, and A. S. Katashinskii, Electrochim. Acta, 50, Nos. 7/8, 1675-1683 (2001).

    Google Scholar 

  5. Z. Qi and P. G. Pickup, Chem. Commun., No. 21, 2299-2300 (1998).

  6. O. Yu. Posudievsky, Ya. I. Kurys, and V. D. Pokhodenko, Synth. Met., 144, No. 2, 107-111 (2004).

    Article  CAS  Google Scholar 

  7. Ya. I. Kurys’, N. S. Netyaga, V. G. Koshechko, and V. D. Pokhodenko, Teor. Éksp. Khim., 43, No. 5, 307-314 (2007). [Theor. Exp. Chem., 43, No. 5, 334-342 (2007) (English translation).]

  8. Ya. I. Kurys, E. S. Dodon, E. A. Ustavitskaya, et al., Élektrokhimiya, 48, No. 11, 1161-1168 (2012).

    Google Scholar 

  9. F. Jaouen, E. Proietti, M. Lefevre, et al., Energy Environ. Sci., 4, No. 114, 114-130 (2011).

    Article  CAS  Google Scholar 

  10. Z. Chen, D. Higgins, A. Yu, et al., Energy Environ. Sci., 4, No. 9, 3167-3192 (2011).

    Article  CAS  Google Scholar 

  11. A. Garsuch, A. Bonakdarpour, G. Liu, et al., Handbook of Fuel Cells: Advances in Electrocatalysis, Materials, Diagnostics and Durability, W. Vielstrich, H. A. Gasteiger, and H. Yokokawa (eds.), Vols. 5, 6, John Wiley & Sons, Weinheim (2009), p. 71.

  12. K. Lee, L. Zhang, H. Lui, et al, Electrochim. Acta, 54, No. 20, 4704-4711 (2009).

    Article  CAS  Google Scholar 

  13. M. Lefevre, E. Proietti, F. Jaouen, and J. P. Dodelet, Science, 324, No. 5923, 71-74 (2009).

    Article  CAS  Google Scholar 

  14. G. Wu, K. L. More, C. M. Johnston, and P. Zelenay, Science, 332, No. 6028, 443-447 (2011).

    Article  CAS  Google Scholar 

  15. P. Wang, Z. Ma, Z. Zhao, and L. Jia, J. Electroanal. Chem., 611, Nos. 1/2, 87-95 (2007).

    Article  CAS  Google Scholar 

  16. R. Bashyam and P. Zelenay, Nature Lett., 443, No. 7, 63-66 (2006).

    Article  CAS  Google Scholar 

  17. C. M. Johnston, P. Piela, and P. Zelenay, Handbook of Fuel Cells: Advances in Electrocatalysis, Materials, Diagnostics and Durability, W. Vielstich, H. A. Gasteiger, and H. Yokokawa (eds.),Vols. 5, 6, John Wiley & Sons, Weinheim (2009), p. 48.

    Google Scholar 

  18. Z. Yin, T. Hu, J. Wang, et al., Electrochim. Acta, 119, 144-154 (2014).

    Article  CAS  Google Scholar 

  19. Ya. I. Kurys, O. O. Ustavytska, V. G. Koshechko, and V. D. Pokhodenko, Electrocatalysis, 6, No. 1, 117-125 (2015).

    Article  CAS  Google Scholar 

  20. G. Rajasudha, D. Rajeswari, B. Lavanya, et al., Colloid Polym. Sci., 283, No. 5, 575-582 (2005).

    Article  CAS  Google Scholar 

  21. H. Talbi, J. Ghanbaja, D. Billaud, and B. Humbert, Polymer, 38, No. 9, 2099-2106 (1997).

    Article  CAS  Google Scholar 

  22. J. Xu, J. Hou, W. Zhou, et al., Spectrochim. Acta A, 63, No. 9, 723-728 (2006).

    Google Scholar 

  23. N. B. Taylan, B. Sari, and H. I. Unal, J. Polym. Sci. B, 48, No. 12, 1290-1298 (2010).

    Article  CAS  Google Scholar 

  24. B. Manoj and A. G. Kunjomana, Int. J. Electrochem. Sci., 7, No. 4, 3127-3134 (2012).

    CAS  Google Scholar 

  25. X. Liu and C. T. Prewitt, Phys. Chem. Miner., 17, No. 2, 168-172 (1990).

    Article  CAS  Google Scholar 

  26. W. L. Smith and A. D. Hobson, Acta Crystallogr. B, 29, No. 2, 362-363 (1973).

    Article  CAS  Google Scholar 

  27. J. Wang, H. Qin, J. Liu, et al., J. Phys. Chem. C, 116, No. 38, 20225-20229 (2012).

    Article  CAS  Google Scholar 

Download references

This work was carried out with the partial financial support of the State Science and Technology Program “Nanotechnology and nanomaterials” (Project No. 6.22.3.11) and the Joint Integrated Basic Research Program of the National Academy of Sciences of Ukraine “Hydrogen in alternative energy and new technologies” (Project No. 6-14).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ya. I. Kurys.

Additional information

Translated from Teoreticheskaya i Éksperimental’naya Khimiya, Vol. 50, No. 6, pp. 367-374, November-December, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kurys, Y.I., Ustavytska, O.O., Mazur, D.O. et al. Oxygen Reduction Nanocomposite Electrocatalysts Based on Polyindole, Cobalt, and Acetylene Black. Theor Exp Chem 50, 371–377 (2015). https://doi.org/10.1007/s11237-015-9390-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11237-015-9390-1

Key words

Navigation