Theoretical and Experimental Chemistry

, Volume 49, Issue 4, pp 228–234 | Cite as

Confocal Raman Spectroscopy of Biological Objects under Conditions of Photoinduced Luminescence Self-Quenching

  • D. Naumenko
  • B. A. Snopok
  • E. Serviene
  • I. Bruzaite
  • V. Snitka
Article

A study was carried out on the mechanism of luminescence self-quenching of heterogeneous biological objects using laser irradiation at 532 nm (50 μW/ μm2) in the format of a confocal microscope. Laser irradiation was found to reduce the luminescence intensity of material by a factor of 3–5, which permits us to obtain informative Raman scattering spectra of the dried cellular envelope of yeast. For irradiation times less than ~3-5 min, quenching is probably due either to formation of radiationless complexes of the excited chromophore molecules with the environment (excimers and/or exciplexes) or partial photodecomposition. Longer irradiation times lead to thermal degradation of the samples with the appearance of peaks corresponding to amorphous carbon.

Key words

luminescence quenching yeast Raman scattering cell envelope photodestruction thermal degradation 

References

  1. 1.
    D. Naumenko, V. Snitka, E. Serviene, et al., The Analyst, DOI: 10.1039/C3AN00362K (2013).Google Scholar
  2. 2.
    M. Kniepp, M. Moskovits, and H. Kneipp (Eds.), Surface-Enhanced Raman Scattering. Physics and Applications, (Topics in Applied Physics, vol. 103), Springer, Berlin-Heidelberg-New York (2006).Google Scholar
  3. 3.
    L. V. Levshin and A. M. Saletskii, Optical Methods in the Study of Molecular Systems. Part 1, Molecular Spectroscopy [in Russian], Izd. Moskovsk. Gos. Univ., Moscow (1994).Google Scholar
  4. 4.
    E. Servienė, S. Pilevičienė, and V. Časaitė, Rom. Biotechnol. Lett., 15, No. 6, 5773–5780 (2010).Google Scholar
  5. 5.
    S. Pilivičienė, A. Lebionka, and E. Servienė, Proc. Nat. Acad. Sci. Belarus, 4, 209–212 (2010).Google Scholar
  6. 6.
    D. Naumenko, V. Snitka, B. Snopok, et al., Nanotechnology, 23, No. 46, 465703 (2012).CrossRefGoogle Scholar
  7. 7.
    V. N. Karnaukhov, Luminescence Analysis of Cells [in Russian], A. Yu. Budantsev (Ed.), Analiticheskaya Mikroskopiya, Pushchino, Russia (2004).Google Scholar
  8. 8.
    A. C. Ferrari and J. Robertson, Phys. Rev. B, 64, No. 7, 075414–13 (2001).CrossRefGoogle Scholar
  9. 9.
    P. M. Boltovets, V. R. Boyko, and B. Snopok, Materialwis. Werkstofftech., 44, Nos. 1/2, 112–118 (2013).CrossRefGoogle Scholar
  10. 10.
    B. A. Snopok and I. V. Kruglenko, Sensors Actuators B, 106, No. 1, 101–113 (2005).CrossRefGoogle Scholar
  11. 11.
    R. M. Ion, Rom. J. Biophysics, 6, Nos. 3/4, 205–212 (1996).Google Scholar
  12. 12.
    A. N. Lapshin, V. A. Smirnov, R. N. Lyubovskaya, and N. F. Gol’dshleger, Izv. Akad. Nauk, Ser. Khim., No. 10, 2265–2269 (2005).Google Scholar
  13. 13.
    F. S. Klis, A. Boorsma, and P. W. De Groot, J. Yeast, 23, 185–202 (2006).CrossRefGoogle Scholar
  14. 14.
    A. Sujith, T. Itoh, H. Abe, et al., Anal. Bioanal. Chem., 394, 1803–1809 (2009).CrossRefGoogle Scholar
  15. 15.
    L. A. Reisner, A. Cao, and A. K. Pandya, Chemometr. Intell. Lab. Systnnnn, 105, 83–90 (2011).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • D. Naumenko
    • 1
  • B. A. Snopok
    • 1
    • 4
  • E. Serviene
    • 2
    • 3
  • I. Bruzaite
    • 3
  • V. Snitka
    • 1
  1. 1.The Research Center for Microsystems and NanotechnologyKaunas University of TechnologyKaunasLithuania
  2. 2.Nature Research CenterVilniusLithuania
  3. 3.Vilnius Gediminas Technical University, Department of Chemistry and BioengineeringVilniusLithuania
  4. 4.V. E. Lashkaryov Institute of Semiconductor PhysicsNational Academy of Sciences of UkraineKyivUkraine

Personalised recommendations