Skip to main content
Log in

X-Ray Structural and Functional Diagnostics of Heterogeneous Catalysts

  • Published:
Theoretical and Experimental Chemistry Aims and scope

Published data on the application of modern X-ray diffraction methods in the investigation of nanomaterials are reviewed. Examples of investigations on refinement of the phase composition, defect structure, and microstructure of catalytic subjects (supports and deposited catalysts) are presented. The effect of structural defects on the functional characteristics of the catalysts is demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. H. M. Rietveld, Acta Crystallogr., 22, 151–152 (1967).

    Article  CAS  Google Scholar 

  2. R. A. Young (ed.), The Rietveld method, Oxford Univ. Press, Oxford (1995).

    Google Scholar 

  3. I. B. Borovskii, R. V. Vedrinskii, V. L. Kraizman, et al., Usp. Fiz. Nauk, 149, 275 (1986).

    Article  CAS  Google Scholar 

  4. A. A. Ishchenko, G. V. Fetisov, and L. A. Aslanov, Nanosilicon: Properties, Production, Application, Investigation Methods, and Control [in Russian], Fizmatlit, Moscow (2011).

    Google Scholar 

  5. A. N. Shmakov, Zh. Strukt. Khim., 53, Supplement, 137–154 (2012).

    Google Scholar 

  6. D. Bazin, C. Mottet, G. Treglea, and J. Lynch, Appl. Surface Sci., 164, Sept., 140 (2000).

    Article  CAS  Google Scholar 

  7. L. M. Plyasova and T. Yu. Kardash, Zh. Strukt. Khim., 53, Supplement, 90–112 (2012).

    Google Scholar 

  8. G. K. Williamson and W. H. Hall, Acta Metall., 1, 22 (1953).

    Article  CAS  Google Scholar 

  9. B. E. Warren and B. L. Everbach, J. Appl. Phys., 21, 595 (1950).

    Article  CAS  Google Scholar 

  10. V. I. Iveronova and G. P. Revkevich, Theory of X-Ray Scattering [in Russian], Izd. Mosk. Gos. Univ. (1976).

  11. P. Scardi and M. Leoni, Acta Crystallogr. A, 58, 190 (2002).

    Article  CAS  Google Scholar 

  12. P. Scardi, M. Leoni, and Y. H. Dong, Eur. Phys. J. B, 18, 23 (2003).

    Article  Google Scholar 

  13. S. J. L. Billinge, Z. Kristallogr. Suppl., 26, 17–26 (2007).

    Article  Google Scholar 

  14. P. Scardi, M. Leoni, and Y. Dong, Newsletter, 24, 23 (2000).

    Google Scholar 

  15. D. Bazin, L. Guczi, and J. Lynch, Appl. Catal. A, 226, Nos. 1/2, 87 (2002).

    CAS  Google Scholar 

  16. S. V. Tsybulya and D. A. Yatsenko, Zh. Strukt. Khim., 53, Supplement, 155–171 (2012).

    Google Scholar 

  17. Z. Kaszkur, J. Appl. Cryst., 33, No. 1, 87–94 (2000).

    Article  CAS  Google Scholar 

  18. Z. Kaszkur, J. Appl. Cryst., 33, No. 5, 1262–1270 (2000).

    Article  CAS  Google Scholar 

  19. Z. Kaszkur, J. Appl. Cryst. Suppl., 23, 147–154 (2006).

    Google Scholar 

  20. A. B. Kazakov, E. S. Shpiro, and T. V. Voskoboinikov, J. Phys. Chem., 99, 8323 (1995).

    Article  CAS  Google Scholar 

  21. R. B. Neder and T. Proffen, Diffuse Scattering and Defect Structure Simulation: A Cook Book Using the Program DISCUS, Oxford Univ. Press, Oxford (2008).

    Book  Google Scholar 

  22. S. V. Tsybulya and S. V. Cherepanova, Introduction to Structural Analysis of Nanocrystals [in Russian], Novosibirsk. Gos. Univ., Novosibirsk (2009).

    Google Scholar 

  23. A. V. Alekseev, A. M. Danilenko, S. V. Cherepanova, and S. A. Gromilov, Zh. Strukt. Khim., 53, Supplement, 50–57 (2012).

    Google Scholar 

  24. S. V. Cherepanova, Zh. Strukt. Khim., 53, Supplement, 113–136 (2012).

    Google Scholar 

  25. N. N. Leont’eva, S. V. Cherepanova, V. A. Drozdov, et al., Teor. Éksp. Khim., 48, No. 4, 257–261 (2012). [Theor. Exp. Chem., 48, No. 4, 278–282 (2012) (English translation).]

    Google Scholar 

  26. S. V. Tsybulya, S. V. Cherepanova, A. A. Khasin, et al., Dokl. Akad. Nauk, 366, 216 (1999).

    CAS  Google Scholar 

  27. D. A. Zyuzin, S. V. Cherepanova, E. B. Burgina, et al., J. Solid State Chem. (JSSC), 179, 2965–2971 (2009).

    Article  Google Scholar 

  28. S. V. Cherepanova and S. V. Tsybulya, J. Mol. Catal., 158, 263–266 (2000).

    Article  CAS  Google Scholar 

  29. A. Cervellino, C. Giannini, and A. Guagliardi, J. Comput. Chem., 27, No. 9, 995 (2006).

    Article  CAS  Google Scholar 

  30. C. Giannini, A. Cervellino, A. Guagliardi, et al., Z. Kristallogr. Suppl., 26, 105 (2007).

    Article  Google Scholar 

  31. A. Cervellino, C. Giannini, and A. Guagliardi, J. Appl. Cryst., 43, 1543 (2010).

    Article  CAS  Google Scholar 

  32. T. H. Proffen and R. B. Neder, J. Appl. Cryst., 30, No. 2, 171 (2010).

    Article  Google Scholar 

  33. D. A. Yatsenko and S. V. Tsybulya, Izv. RAN, Ser. Fiz., 76, No. 3, 472 (2012).

    Google Scholar 

  34. D. A. Yatsenko, V. P. Pakharukova, S. V. Tsybulya, et al., Zh. Strukt. Khim., 53, No. 3, 554–562 (2012).

    Google Scholar 

  35. J. Oddershede and K. Stahl, Z. Kristallogr., 23, 325–330 (2006).

    Google Scholar 

  36. J. Oddershede, K. Nielsen, and K. Stahl, Z. Kristallogr., 222, Nos. 3/4, 186 (2007).

    Article  CAS  Google Scholar 

  37. T. Yu. Kardash, L. M. Plyasova, D. I. Kochybev, et al., Z. Kristallogr., 227, 288 (2012).

    Article  CAS  Google Scholar 

  38. K. S. Liang, S. S. Laderman, and J. H. Sinfelt, J. Chem. Phys., 86, 2352 (1987).

    Article  CAS  Google Scholar 

  39. A. N. Shmakov, E. M. Moroz, and A. L. Chuvilin, Nucl. Instr. Methods A, 405, 470 (1998).

    Article  CAS  Google Scholar 

  40. J. Coraux, V. Favre-Nicolin, M. Proietti, et al., Nucl. Instr. Methods B, 246, 58 (2006).

    Article  CAS  Google Scholar 

  41. O. Haruyama, K. Sugiyama, M. Sakura, and Y. Waseda, J. Non-Cryst. Solids, 353, 3053 (2007).

    Article  CAS  Google Scholar 

  42. C. L. Farrow and S. J. L. Billinge, Acta Crystallogr. A, 65, 232 (2009).

    Article  CAS  Google Scholar 

  43. E. M. Moroz, Usp. Khim., 80, No. 4, 315–331 (2011).

    Article  Google Scholar 

  44. T. Egami and S. J. L. Billinge, Underneath the Bragg Peaks: Structural Analysis of Complex Materials, Pergamon Press, Elsevier, Oxford (2003).

    Google Scholar 

  45. C. L. Farrow, P. Juhas, J. W. Liu, et al., J. Phys. Condens. Matter., 19, 3352 (2007).

    Article  Google Scholar 

  46. G. R. Kosmambetova, V. V. Kriventsov, E. M. Moroz, et al., Nuclear Instruments and Methods in Physics Research A, 603, 191–193 (2009).

    Article  CAS  Google Scholar 

  47. V. P. Pakharukova, E. M. Moroz, V. V. Kriventsov, et al., Appl. Catal. A, 365, 159–164 (2009).

    Article  CAS  Google Scholar 

  48. V. P. Pakharukova, E. M. Moroz, V. V. Kriventsov, et al., J. Phys. Chem. C, 113, No. 51, 21368–21375 (2009).

    Article  CAS  Google Scholar 

  49. E. M. Moroz, Zh. Strukt. Khim., 53, Supplement, 66–89 (2012).

    Google Scholar 

  50. E. M. Moroz, Usp. Khim., 61, No. 2, 356–383 (1992).

    Article  CAS  Google Scholar 

  51. E. M. Moroz, V. P. Pakharukova, and A. N. Shmakov, Nuclear Instruments and Methods in Physics Research A, 603, 99–101 (2009).

    Article  CAS  Google Scholar 

  52. V. P. Pakharukova, E. M. Moroz, and D. A. Zyuzin, Zh. Strukt. Khim., 51, 288–294 (2010).

    Google Scholar 

  53. J. Feshete, Y. Wang, and J. Vedrin, Catal. Today, 189, 2 (2012).

    Article  Google Scholar 

  54. P. Ratnasamy and A. J. Leonard, Catal. Rev. -Sci. Eng., 6, 293 (1972).

    Article  CAS  Google Scholar 

  55. P. Ratnasamy, A. J. Leonard, L. Rodrigue, and J. Fripiat, J. Catal., 29, 374 (1973).

    Article  CAS  Google Scholar 

  56. P. E. Kolosov and E. M. Moroz, Kinet. Katal., 33, 435–442 (1992).

    CAS  Google Scholar 

  57. P. E. Kolosov and E. M. Moroz, Kinet. Katal., 36, 337–341 (1995).

    Google Scholar 

  58. E. M. Moroz, Zh. Prikl. Khim., No. 11, 1764–1776 (1996).

  59. P. A. Simonov, A. V. Romanenko, I. P. Prosvirin, et al., Carbon, 35, No. 1, 73–82 (1997).

    Article  CAS  Google Scholar 

  60. S. P. Gubin, E. M. Moroz, A. I. Boronin, et al., Mendeleev Commun. MENCEX (2), 45–86 (1999).

  61. E. M. Moroz, A. S. Ivanova, and D. A. Zyuzin, J. Mol. Catal. A, 158, 313–317 (2000).

    Article  CAS  Google Scholar 

  62. V. V. Kriventsov, D. A. Zyuzin, S. V. Bogdanov, et al., Nuclear Instruments and Methods in Physics Research A, 448, 314 (2000).

    Article  CAS  Google Scholar 

  63. K. I. Schafer, Structural Features of Pseudoboehmite and Gamma Aluminum Oxide. Investigation Based on X-Ray Diffraction Data [in Russian], LAMBERT Acad. Publ., Saarbrücken, Germany (2012).

    Google Scholar 

  64. K. I. Schafer, S. V. Cherepanova, E. M. Moroz, et al., Zh. Strukt. Khim., 51, 137–147 (2010).

    Google Scholar 

  65. K. I. Schafer, D. A. Yatsenko, S. V. Tsybulya, et al., Zh. Strukt. Khim., 51, 337–341 (2010).

    Google Scholar 

  66. E. M. Moroz, K. I. Schafer, D. A. Zyuzin, and A. N. Shmakov, Zh. Strukt. Khim., 52, 336–339 (2011).

    Google Scholar 

  67. K. I. Schafer, S. V. Cherepanova, S. V. Tsybulya, et al., Zh. Strukt. Khim., 54, 89 (2013).

    Google Scholar 

  68. S. V. Tsybulya and G. N. Kryukova, Phys. Rev. B, 77, 024112-1-024112-13 (2008).

    Article  Google Scholar 

  69. A. Chroneos, K. Desai, S. E. Redfern, et al., J. Mater. Sci., 41, 675–687 (2006).

    Article  CAS  Google Scholar 

  70. M. Digne, P. Raybaud, P. Sautet, et al., J. Phys. Chem. B, 110, 20719 (2006).

    Article  CAS  Google Scholar 

  71. G. Paglia, C. E. Buckley, A. L. Rohl, et al., Chem. Mater., 16, 220–236 (2004).

    Article  CAS  Google Scholar 

  72. G. Paglia, C. E. Buckley, and T. J. Udovic, Chem. Mater., 16, 1914–1923 (2004).

    Article  CAS  Google Scholar 

  73. G. Paglia, E. S. Bozin, and S. J. L. Billinge, Chem. Mater., 18, 3242–3248 (2006).

    Article  CAS  Google Scholar 

  74. D. A. Zyuzin, S. V. Cherepanova, E. B. Burgina, et al., J. Solid State Chem. (JSSC), 179, 2965–2971 (2009).

    Google Scholar 

  75. Card Index ICSD for WWW, Copyright by (FIZ)/Karlsruhe, 2007.

  76. G. R. Kosmambetova, P. E. Strizhak, E. M. Moroz, et al., Teor. Éksp. Khim., 43, No. 2, 96–101 (2007). [Theor. Exp. Chem., 43, No. 2, 102–107 (2007) (English translation).]

    Google Scholar 

  77. E. M. Moroz, A. S. Ivanova, and D. A. Zyuzin, J. Mol. Catal. A, 158, 313–317 (2000).

    Article  CAS  Google Scholar 

  78. V. P. Pakharukova, E. M. Moroz, D. A. Zyuzin, et al., J. Phys. Chem. C, 116, 9762–9768 (2012).

    Article  CAS  Google Scholar 

  79. E. M. Moroz, S. V. Bogdanov, N. E. Buyanova, et al., Kinet. Katal., 19, 1029 (1978).

    CAS  Google Scholar 

  80. A. Tropol’skii, Yu. Ryndin, E. Moroz, et al., Kinet. Katal., 18, 1531 (1978).

    Google Scholar 

  81. V. A. Ushakov, E. M. Moroz, P. A. Zhdan, et al., Kinet. Katal., 19, 744 (1978).

    CAS  Google Scholar 

  82. H. Knozinger and P. Ratnasamy, Catal. Rev. -Sci. Eng., 17, 31 (1978).

    Article  Google Scholar 

  83. F. Figueras, B. Mensier, and L. Mourgues, J. Catal., 19, 315 (1970).

    Article  Google Scholar 

  84. E. Moroz, V. Kriventsov, and D. Kochubei, J. Struct. Chem., 50, No. 6, 1082 (2010).

    Article  Google Scholar 

  85. O. B. Belskaya and V. K. Duplyakin, Russ. Chem. J., 1, 754 (2007).

    Google Scholar 

  86. A. S. Belyi, Kinet. Katal., 49, No. 4, 562 (2008).

    Article  CAS  Google Scholar 

  87. J. Escard, B. Pontvianne, and M. J. Chenebaux, Bull. Soc. Chim. France, Nos. 3/4, 349 (1976).

  88. B. L. Moroz, A. V. Nartova, D. A. Zyuzin, et al., Abstracts of Congress on Catalysis “Roskataliz” [in Russian], October 3–7, 2011, Novosibirsk (2011), Vol. 1, p. 62.

  89. E. M. Moroz, Kinet. Katal., 34, 31–41 (1993).

    CAS  Google Scholar 

  90. V. Gnutzmann and W. Vogel, J. Phys. Chem., 94, 4991 (1990).

    Article  CAS  Google Scholar 

  91. N. Hartmann, R. Imbihl, and W. Vogel, Catal. Lett., 28, 373 (1994).

    Article  CAS  Google Scholar 

  92. W. Vogel, P. Britz, H. Bonnemann, et al., J. Phys. Chem. B, 101, 11029 (1997).

    Article  CAS  Google Scholar 

  93. W. Vogel, B. Rosner, and B. Tesche, J. Phys. Chem., 97, 116511 (1993).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. M. Moroz.

Additional information

Translated from Teoreticheskaya i Éksperimental’naya Khimiya, Vol. 49, No. 2, pp. 67–80, March-April, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moroz, E.M. X-Ray Structural and Functional Diagnostics of Heterogeneous Catalysts. Theor Exp Chem 49, 71–87 (2013). https://doi.org/10.1007/s11237-013-9298-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11237-013-9298-6

Key words

Navigation