Skip to main content
Log in

Nanosize effects in heterogeneous catalysis

  • Published:
Theoretical and Experimental Chemistry Aims and scope

The principal nanosize effects observed in heterogeneous catalytic reactions are formulated on the basis of an analysis of published data. It is shown that strong effects are observed for nanoparticles with sizes in the range of 1-10 nm and weak effects in the range of 10-100 nm. It is shown that among the 19 effects discussed only three (the quantum-size effect, the charge effect, and the nanoparticle–liquid phase transition) can be used to explain the appearance of the catalytic activity of the nanoparticles and particularly of nano-sized gold.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. C. N. R. Rao, A. Müller, and A. K. Cheetham (eds.), Nanomaterials Chemistry, Wiley, Weinheim (2008).

    Google Scholar 

  2. A. O. Geoffrey, A. C. Arsenault, and L. Cademartiri, Nanochemistry: A Chemical Approach to Nanomaterials, RSC Publ., Cambridge (2009).

    Google Scholar 

  3. I. P. Suzdalev, Nanotechnology: Physical Chemistry of Nanoclusters, Nanostructures, and Nanomaterials [in Russian], KomKniga, Moscow (2006).

    Google Scholar 

  4. G. B. Sergeev, Nanochemistry [in Russian], Izd. Mosk. Univ., Moscow (2003).

    Google Scholar 

  5. B. M. Caruta (ed.), Nanomaterials: New Research, Nova Sci. Publ., New York (2005).

    Google Scholar 

  6. G. Cao, Nanostructures and Nanomaterials: Synthesis, Properties and Applications, Imperial College Press, London (2004).

    Book  Google Scholar 

  7. V. E. Borisenko and S. Ossicini, What is What in the Nanoworld: A Handbook on Nanoscience and Nanotechnology, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim (2012).

    Book  Google Scholar 

  8. A. V. Ragulya and V. V. Skorokhod, Consolidated Structural Materials [in Russian], Naukova Dumka, Kiev (2007).

    Google Scholar 

  9. A. S. Edelstein and R. C. Cammarata (eds.), Nanomaterials: Synthesis, Properties, and Applications, Taylor&Francis Group, New York (1998).

    Google Scholar 

  10. B. Zhou, S. Hermans, and G. A. Samorjai (eds.), Nanotechnology in Catalysis, Springer, London (2004), Vol. 1/2.

    Google Scholar 

  11. U. Heiz and U. Landman (eds.), Nanocatalysis, Springer, Heidelberg (2007).

    Google Scholar 

  12. C. P. Vinod, Catal. Today, 154, Nos. 1/2, 113–117 (2010).

    Article  CAS  Google Scholar 

  13. D. Astruc, Nanoparticles and Catalysis, D. Astruc (ed.), Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim (2008), pp. 1–48.

    Google Scholar 

  14. B. F. G. Johnson, Top. Catal., 24, Nos. 1–4, 147–159 (2003).

    Article  CAS  Google Scholar 

  15. D. Astruc, F. Lu, and J. R. Aranzaes, Angew. Chem., 44, No. 48, 7852–7872 (2005).

    Article  CAS  Google Scholar 

  16. K. I. Zamaraev, Usp. Khim., 62, No. 11, 1051–1063 (1993).

    Article  CAS  Google Scholar 

  17. X. Zhou, W. Xu, G. Liu, et al., J. Am. Chem. Soc., 132, No. 1, 138–146 (2010).

    Article  CAS  Google Scholar 

  18. G. K. Boreskov, Heterogeneous Catalysis [in Russian], Nauka, Moscow (1988).

    Google Scholar 

  19. V. I. Bukhtiyarov, Usp. Khim., 70, No. 2, 167–181 (2001).

    Article  CAS  Google Scholar 

  20. V. I. Bukhtiyarov, Usp. Khim., 76, No. 6, 596–627 (2007).

    Article  CAS  Google Scholar 

  21. M. Boudart, Adv. Catal., 20, 153–166 (1969).

    Article  CAS  Google Scholar 

  22. G. C. Bond, Surface Sci., 156, 966–981 (1985).

    Article  CAS  Google Scholar 

  23. V. P. Zhdanov and B. Kasemo, Surface Sci. Rep., 39, 25–104 (2000).

    Article  CAS  Google Scholar 

  24. M. Boudart, Chem. Rev., 95, 661–666 (1995).

    Article  CAS  Google Scholar 

  25. M. Che and C. O. Bennett, Adv. Catal., 36, 153–164 (1978).

    Google Scholar 

  26. D. Farin and D. Avnir, J. Am. Chem. Soc., 110, No. 7, 2039–2045 (1988).

    Article  CAS  Google Scholar 

  27. http://www.iupac.org/

  28. I. E. Beck, V. I. Bukhtiarov, I. Yu. Pakharukov, et. al., J. Catal., 268, No. 1, 60–67 (2009).

    Article  CAS  Google Scholar 

  29. J. Y. Park, Y. Zhang, S. Hoon, et al., Catal. Today, 181, 133–137 (2012).

    Article  CAS  Google Scholar 

  30. A. Binder, M. Seipenbusch, M. Muhler, and G. Kasper, J. Catal., 268, No. 1, 150–155 (2009).

    Article  CAS  Google Scholar 

  31. G. Centi and S. Perathoner, Catal. Today, 79/80, 3–13 (2003).

    Article  CAS  Google Scholar 

  32. Z. Tian, Y. Xu, and L. Liwu, Chem. Eng. Sci., 59, 1745–1753 (2004).

    Article  CAS  Google Scholar 

  33. A. M. Tavares da Silva, Mater. Technol., 43, No. 3, 113–121 (2009).

    CAS  Google Scholar 

  34. M. Haruta, Catal. Today, 36, 153–166 (1997).

    Article  CAS  Google Scholar 

  35. G. R. Bamwenda, S. Tsubota, T. Nakamura, and M. Haruta, Catal. Lett., 44, 83–87 (1997).

    Article  CAS  Google Scholar 

  36. M. Haruta, J. New Mater. Electrochem. Systems, 7, 163–172 (2004).

    CAS  Google Scholar 

  37. B. R. Cuenya, Thin Solid Films, 518, 3127–3150 (2010).

    Article  CAS  Google Scholar 

  38. L. Guczi, D. Horváth, Z. Pászti, and G. Petõ, Catal. Today, 72, 101–105 (2002).

    Article  CAS  Google Scholar 

  39. I. N. Remediakis, N. Lopez, and J. K. Norskov, Appl. Catal. A, 291, 13–20 (2005).

    Article  CAS  Google Scholar 

  40. G. J. Hutchings, Catal. Today, 100, 55–61 (2005).

    Article  CAS  Google Scholar 

  41. G. C. Bond, C. Louis, and D. T. Thompson, Catalysis by Gold, Imperial College Press, London (2006) (Catalytic Science Series, Vol. 6).

    Google Scholar 

  42. X. Liu, D. Wang, and Y. Li, Nano Today, 7, No. 5, 448–466 (2012).

    Article  CAS  Google Scholar 

  43. S. T. Aruna and A. S. Mukasyan, Curr. Opin. Solid State Mater. Sci., 12, Nos. 3/4, 44–50 (2008).

    Article  CAS  Google Scholar 

  44. E. L. Dreizin, Progr. Energy Combust. Sci., 35, No. 2, 141–167 (2009).

    Article  CAS  Google Scholar 

  45. Q. Yuan, H. H. Duan, L. L. Li, et al., J. Colloid Interface Sci., 335, No. 2, 151–167 (2009).

    Article  CAS  Google Scholar 

  46. M. A. Van Hove, Surface Sci., 603, Nos. 10–12, 1301–1305 (2009).

    Article  CAS  Google Scholar 

  47. J. J. Storhoff, R. C. Muck, and C. A. Mirkin, J. Cluster Sci., 8, No. 2, 179–216 (1997).

    Article  CAS  Google Scholar 

  48. M. Zäch, C. Hägglund, H. D. Chakarov, and B. Kasemo, Curr. Opin. Solid State Mater. Sci., 10, 132–143 (2006).

    Article  CAS  Google Scholar 

  49. S.-E. Park and Sujandi, Curr. Appl. Phys., 8, 664–668 (2008).

  50. S. Guo and W. Erkang, Nano Today, 6, No. 3, 240–264 (2011).

    Article  CAS  Google Scholar 

  51. T. V. Choudhary and D. W. Goodman, Appl. Catal. A, 291, 32–36 (2005).

    Article  CAS  Google Scholar 

  52. G. Centi and S. Perathone, Coord. Chem. Rev., 255, 1480–1498 (2011).

    Article  CAS  Google Scholar 

  53. G. L. Haller, J. Catal., 216, 12–22 (2003).

    Article  CAS  Google Scholar 

  54. H. Chu, L. Wei, R. Cui, et al., Coord. Chem. Rev., 254, Nos. 9/10, 1117–1134 (2010).

    Article  CAS  Google Scholar 

  55. J. Y. Ying, Chem. Eng. Sci., 61, 1540–1548 (2006).

    Article  CAS  Google Scholar 

  56. P. L. Hansen, J. B. Wagner, S. Helveg, et al., H. Topsøe Science, 295, No. 5562, 2053–2055 (2002).

    CAS  Google Scholar 

  57. Z. Wu, J. Chen, Q. Di, and M. Zhang, Catal. Commun., 18, 55–59 (2012).

    Article  CAS  Google Scholar 

  58. T. N. Rostovshchikova, V. V. Smirnov, V. M. Kozhevin, et al., Ros. Nanotekhnologii, 2, Nos. 1/2, 47–60 (2007).

    Google Scholar 

  59. H. Kim, S. C. Lim, and Y. H. Lee, Phys. Lett. A, 375, No. 27, 2661–2664 (2011).

    Article  CAS  Google Scholar 

  60. L. Li, M. Hong, and M. Schmidt, CIRP Annals, Manufact. Technol., 60, No. 2, 735–755 (2011).

    Article  CAS  Google Scholar 

  61. C. H. Cheng, K. Malek, P. C. Sui, and N. Djilali, Electrochim. Acta, 55, No. 5, 1588–1597 (2010).

    Article  CAS  Google Scholar 

  62. M. Wu, G. Yang, and M. Wang, Mater. Chem. Phys., Nos. 2/3, 547–555 (2008).

  63. P. E. Strizhak, Teor. Éksp. Khim., 40, No. 4, 199–203 (2004). [Theor. Exp. Chem., 40, No. 4, 203–208 (2004) (English translation).]

    Article  CAS  Google Scholar 

  64. B. B. Mandelbrot, The Fractal Geometry of Nature, Freeman, New York (1983).

    Google Scholar 

  65. D. Avnir (ed.), The Fractal Approach to Heterogeneous Chemistry, John Wiley and Sons, New York (1989).

    Google Scholar 

  66. H. A. Lauwerier, Fractals, Images of Chaos, Princeton Univ. Press, New York (1991).

    Google Scholar 

  67. W. G. Rothschild, Fractals in Chemistry, John Wiley and Sons, New York (1998).

    Google Scholar 

  68. A. V. Neimark, Zh. Fiz. Khim., 64, No. 10, 2593–2605 (1990).

    CAS  Google Scholar 

  69. A. I. Tripol’skii and P. E. Strizhak, Teor. Éksp. Khim., 43, No. 5, 267–274 (2007). [Theor. Exp. Chem., 43, No. 5, 287–296 (2007) (English translation).]

    Article  CAS  Google Scholar 

  70. A. I. Tripol’skii, T. N. Gurnik, and P. E. Strizhak, Khim., Fiz., Tekhnol. Poverkhn., No. 14, 238–247 (2008).

  71. A. I. Trypolskyi, T. M. Gurnyk, and P. E. Strizhak, Catal. Commun., 12, No. 8, 766–771 (2011).

    Article  CAS  Google Scholar 

  72. A. I. Trypolskyi, T. M. Gurnyk, and P. E. Strizhak, Handbook on the Classification and Application of Fractals, K. J. Brennan (ed.), Nova Sci. Publ., New York (2012), pp. 41–67.

    Google Scholar 

  73. A. I. Tripol’skii, T. N. Gurnik, P. E. Strizhak, and T. S. Ivashchenko, Teor. Éksp. Khim., 45, No. 4, 245–248 (2009). [Theor. Exp. Chem., 45, No. 4, 258–262 (2009) (English translation).]

    Article  CAS  Google Scholar 

  74. A. I. Tripol’skii, T. G. Serebrii, N. V. Lemesh, et al., Teor. Éksp. Khim., 45, No. 2, 93–97 (2009). [Theor. Exp. Chem., 45, No. 2, 103–107 (2009) (English translation).]

    Article  CAS  Google Scholar 

  75. A. I. Tripol’skii, T. N. Gurnik, N. V. Vlasenko, et al., Teor. Éksp. Khim., 46, No. 5, 317–322 (2010). [Theor. Exp. Chem., 46, No. 5, 328–333 (2010) (English translation).]

    Article  CAS  Google Scholar 

  76. O. Z. Didenko, G. R. Kosmambetova, and P. E. Strizhak, J. Mol. Catal., 335, Nos. 1/2, 14–23 (2011).

    Article  CAS  Google Scholar 

  77. F. Zaera, Progr. Surface Sci., 69, 1–98 (2001).

    Article  CAS  Google Scholar 

  78. G. A. Somorjai, R. L. York, D. Butcher, and J. Y. Park, Phys. Chem. Chem. Phys., 9, 3500–3513 (2007).

    Article  CAS  Google Scholar 

  79. C.-T. Wang and J.-C. Lin, Appl. Surface Sci., 254, No. 15, 4500–4507 (2008).

    Article  CAS  Google Scholar 

  80. Y. B. Jang, T. H. Kim, M. H. Sun, et al., Catal. Today, 146, Nos. 1/2, 196–201 (2009).

    Article  CAS  Google Scholar 

  81. C. Liu, Q. Zhu, Z. Wu, et al., Appl. Catal. A, 390, Nos. 1/2, 19–25 (2010).

    CAS  Google Scholar 

  82. G. I. Golodets, Heterogeneous Catalytic Reactions Involving Molecular Oxygen [in Russian], Naukova Dumka, Kiev (1977).

    Google Scholar 

  83. G. A. Somorjai, Adv. Catal., 26, 1–67 (1977).

    Article  CAS  Google Scholar 

  84. M. Neurock, J. Catal., 216, 73–88 (2003).

    Article  CAS  Google Scholar 

  85. R. Narayanan and M. A. El-Sayed, Top. Catal., 47, 15–21 (2008).

    Article  CAS  Google Scholar 

  86. I. B. Bychko, E. Yu. Kalishin, and P. E. Strizhak, Teor. Éksp. Khim., 48, No. 3, 179–183 (2012). [Theor. Exp. Chem., 48, No. 3, 194–198 (2012) (English translation).]

    Article  CAS  Google Scholar 

  87. I. Bychko, Y. Kalishyn, and P. Strizhak, Adv. Mater. Phys. Chem., 2, 17–22 (2012).

    CAS  Google Scholar 

  88. B. R. Cuenya, Thin Solid Films, 518, 3127–3150 (2010).

    Article  CAS  Google Scholar 

  89. G. A. Somorjai and Y. Li, Top. Catal., 53, 832–847 (2010).

    Article  CAS  Google Scholar 

  90. Y. Shibutaa and T. Suzuki, J. Chem. Phys., 129, 144102 (2008).

    Article  CAS  Google Scholar 

  91. H. M. Lu, P. Y. Li, Z. H. Cao, et al., J. Phys. Chem. C, 113, 7598–7602 (2009).

    Article  CAS  Google Scholar 

  92. G. Guisbiers, G. Abudukelimu, and D. Hourlier, Nanoscale Res. Lett., 6, 396–400 (2011).

    Article  CAS  Google Scholar 

  93. Q. Jiang, Z. Zhang, and J. C. Li, Acta Mater., 48, No. 20, 4791–4795 (2000).

    Article  CAS  Google Scholar 

  94. T. H. Wang, Y. F. Zhu, and Q. Jiang, Mater. Chem. Phys., 111, Nos. 2/3, 293–295 (2008).

    Article  CAS  Google Scholar 

  95. H. H. Andersen and E. Johnson, Ion Beam Modification of Materials, 480–491 (1996).

  96. Q. S. Mei and K. Lu, Progr. Mater. Sci., 52, No. 8, 1175–1262 (2007).

    Article  CAS  Google Scholar 

  97. Mikrajuddin, F. G. Shi, T. G. Nieh, and K. Okuyama, Microelectron. J., 31, No. 5, 343–351 (2000).

    Article  CAS  Google Scholar 

  98. A. F. Lopeandía and J. Rodríguez-Viejo, Thermochim. Acta, 461, Nos. 1/2, 82–87 (2007).

    Article  CAS  Google Scholar 

  99. J. M. García-Cortés, J. Pérez-Ramírez, and J. N. Rouzaud, J. Catal., 218, No. 1, 111–122 (2003).

    Article  CAS  Google Scholar 

  100. I. E. Beck, V. I. Bukhtiyarov, I. Yu. Pakharukov, et al., J. Catal., 268, No. 1, 60–67 (2009).

    Article  CAS  Google Scholar 

  101. G. A. Somorjai, Catal. Today, 18, 113–123 (1993).

    Article  CAS  Google Scholar 

  102. G. A. Somorjai, Catal. Lett., 7, Nos. 1–4, 169–182 (1990).

    CAS  Google Scholar 

  103. P. W. Jacobs and G. A. Somorjai, J. Mol. Catal. A, 131, 5–18 (1998).

    Article  CAS  Google Scholar 

  104. G. K. Boreskov, Catalysis. Problems of Theory and Practise [in Russian], Nauka, Novosibirsk (1987).

  105. P. L. Hansen, J. B. Wagner, S. Helveg, et al., Science, 295, 2053–2055 (2002).

    Article  CAS  Google Scholar 

  106. M. S. Pierce, K.-C. Chang, D. C. Hennessy, et al., J. Phys. Chem. C, 112, 7–15 (2008).

    Article  CAS  Google Scholar 

  107. M. Valden, X. Lai, and D. W. Goodman, Science, 281, 1647–1650 (1998).

    Article  CAS  Google Scholar 

  108. M. S. Chen and D. W. Goodman, Catal. Today, 111, 22–33 (2006).

    Article  CAS  Google Scholar 

  109. D. W. Goodman, J. Catal., 216, 213–222 (2003).

    Article  CAS  Google Scholar 

  110. N. Dimitratos, A. Villa, C. L. Bianchi, et al., Appl. Catal. A, 311, 185–192 (2006).

    Article  CAS  Google Scholar 

  111. F. Porta and M. Rossi, J. Mol. Catal. A, 204/205, 553–559 (2003).

    Article  CAS  Google Scholar 

  112. L. V. Ermolaev and A. A. Slinkin, Usp. Khim., 60, No. 4, 689–713 (1991).

    Google Scholar 

  113. M. M. Schubert, S. Hackenberg, A. C. van Veen, et al., J. Catal., 197, No. 1, 113–122 (2001).

    Article  CAS  Google Scholar 

  114. U. Heiz and W.-D. Schneider, J. Phys. D, 33, R85 (2000).

    Article  CAS  Google Scholar 

  115. E. C. H. Sykes, M. S. Tikhov, and R. M. Lambert, Catal. Lett., 82, 169–173 (2002).

    Article  CAS  Google Scholar 

  116. C. L. Carnes and K. J. Klabunde, J. Mol. Catal., 194, 227–336 (2003).

    Article  CAS  Google Scholar 

  117. K. Chen, A. T. Bell, and E. Iglesia, J. Catal., 209, 35–42 (2002).

    Article  CAS  Google Scholar 

  118. M. D. Argyle, K. Chen, and A. T. Bell, J. Catal., 208, No. 1, 139–149 (2002).

    Article  CAS  Google Scholar 

  119. U. Koch, A. Fojtik, H. Weller, and A. Henglein, Chem. Phys. Lett., 122, 507–510 (1985).

    Article  CAS  Google Scholar 

  120. S. Y. Kim, Y. S. Yeon, S. M. Park, et al., Chem. Phys. Lett., 462, 100–106 (2008).

    Article  CAS  Google Scholar 

  121. Y. Dieckmann, H. Coelfen, H. Hofmann, et al., Anal. Chem., 81, 3889–3895 (2009).

    Article  CAS  Google Scholar 

  122. P. E. Strizhak, O. Z. Didenko, and G. R. Kosmambetova, Mater. Lett., 62, 4094–4096 (2008).

    Article  CAS  Google Scholar 

  123. O. Z. Didenko, G. R. Kosmambetova, and P. E. Strizhak, Chin. J. Catal., 29, 1079–1085 (2008).

    Article  CAS  Google Scholar 

  124. E. M. Wong, P. G. Hoertz, C. J. Liang, et al., Langmuir, 17, No. 26, 8362–8367 (2001).

    Article  CAS  Google Scholar 

  125. E. M. Wong, J. E. Bonevich, and P. C. Searson, J. Phys. Chem. B, 120, No. 40, 7770–7775 (1998).

    Article  Google Scholar 

  126. U. Kreibig and M. Vollmer (eds.), Optical Properties of Metal Clusters, Springer, Berlin, Heidelberg (1995) (Springer Series in Materials Science, Vol. 25).

    Google Scholar 

  127. Y. Dieckmann, H. Coelfen, and H. Hofmann, Anal. Chem., 81, 3889–3895 (2009).

    Article  CAS  Google Scholar 

  128. M. C. Kung, R. J. Davis, and H. H. Kung, J. Phys. Chem. C, 111, 11767–11775 (2007).

    Article  CAS  Google Scholar 

  129. M. Ojeda, B.-Z. Zhan, and E. Iglesia, J. Catal., 285, No. 1, 92–102 (2012).

    Article  CAS  Google Scholar 

  130. J.H. Liu, A.-Q. Wang, and Y.-S. Chi, J. Phys. Chem. B, 109, 40–47 (2005).

    Article  CAS  Google Scholar 

  131. Y. Iizuka, A. Kawamoto, K. Akita, et al., Catal. Lett., 97, 203–208 (2004).

    Article  CAS  Google Scholar 

  132. C. Burgel, N. M. Reilly, and G. E. Johnson, J. Am. Chem. Soc., 130, 1694–1698 (2008).

    Article  CAS  Google Scholar 

  133. S. N. Maximoff and M. P. Head-Gordon, www.pnas.orgcgidoi10.1073pnas.0902030106.

  134. J. Y. Park, J. R. Renzas, B. B. Hsu, and G. A. Somorjai, J. Phys. Chem. C, 111, 15331–15336 (2007).

    Article  CAS  Google Scholar 

  135. Y. Iizuka, T. Miyamae, and T. Miuraa, J. Catal., 262, 280–286 (2009).

    Article  CAS  Google Scholar 

  136. M. Haruta, CATTECH, 6, 102–115 (2002).

    Article  CAS  Google Scholar 

  137. V. N. Parmon, Dokl. RAN. Fiz. Khim., 413, 53–59 (2007).

    Google Scholar 

  138. Y. Zhang, X. Cui, and F. Shi, Chem. Rev., 112, No. 4, 2467–2505 (2012).

    Article  CAS  Google Scholar 

  139. H. M. Lu and X. K. Meng, J. Phys. Chem. C, 114, 1534–1538 (2010).

    Article  CAS  Google Scholar 

  140. H. M. Lu, D. N. Ding, and Z. H. Cao, J. Phys. Chem. C, 111, 12914–12917 (2007).

    Article  CAS  Google Scholar 

  141. H. M. Lu, F. Q. Han, and X. K. Meng, J. Phys. Chem. B, 112, 9444–9448 (2008).

    Article  CAS  Google Scholar 

  142. C. C. Yang, J. Armellin, and S. Li, J. Phys. Chem. B, 1482–1487 (2008).

  143. D. Yu. Murzin and I. L. Simakova, Kinet. Katal., 51, No. 6, 855–858 (2010).

    Article  CAS  Google Scholar 

  144. D. Yu. Murzin, J. Catal., 276, No. 1, 85–91 (2010).

    Article  CAS  Google Scholar 

  145. D. Yu. Murzin, J. Mol. Catal. A, 315, 226–230 (2010).

    Article  CAS  Google Scholar 

  146. G. D. Chukin, Structure of Aluminum Oxide and Hydrodesulfurization Catalysts. Reaction Mechanisms [in Russian], Tipografiya Paladin, OOO Printa, Moscow (2010).

    Google Scholar 

  147. A. P. Bolton, Zeolite Chemistry and Catalysis (ACS Monograph, No. 171), J. A. Rabo (ed.), ACS, Washington (1976).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. E. Strizhak.

Additional information

Translated from Teoreticheskaya i Éksperimental’naya Khimiya, Vol. 49, No. 1, pp. 1–19, January-February, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Strizhak, P.E. Nanosize effects in heterogeneous catalysis. Theor Exp Chem 49, 2–21 (2013). https://doi.org/10.1007/s11237-013-9297-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11237-013-9297-7

Keywords

Navigation