Advertisement

Theoretical and Experimental Chemistry

, Volume 48, Issue 4, pp 258–264 | Cite as

Role of active components of an Ag/Al2O3/cordierite catalyst in selective reduction of NO by ethanol

  • N. A. Popovich
  • P. I. Kiriienko
  • S. A. Solov’ev
  • S. N. Orlik
  • S. Dzwigaj
Article

We show that the activity of silver/aluminum oxide catalysts in selective reduction of nitrogen oxides by ethanol increases as the Al2O3 content increases, and is determined by the optimal silver content for which Ag+ cations and \( {\mathrm{Ag}}_n^{\updelta + } \) nanoclusters form on the Al2O3 surface. The role of silver in Ag/Al2O3/cordierite is to regulate the redox and acid–base properties of the surface of the catalyst.

Key words

Ag/Al2O3/cordierite selective catalytic reduction of NO ethanol 

References

  1. 1.
    S. Kameoka, Y. Ukisu, and T. Miyadera, Phys. Chem. Chem. Phys., 2, 367-372 (2000).CrossRefGoogle Scholar
  2. 2.
    Y. H. Yeom, M. Li, W. M. H. Sachtler, and E. Weitz, J. Catal., 246, 413-427 (2007).CrossRefGoogle Scholar
  3. 3.
    H. He, Y. Li, X. Zhang, et al., Appl. Catal. A, 375, 258-264 (2010).CrossRefGoogle Scholar
  4. 4.
    J. Li, Sh. Kang, L. Fu, and J. Hao, Front. Environ. Sci. Eng. China, 1, No. 2, 143-146 (2007).CrossRefGoogle Scholar
  5. 5.
    N. Popovych, P. Kirienko, S. Soloviev, and S. Orlyk, Catal. Today (2012). doi: 10.1016/j.cattod.2012.01.039.
  6. 6.
    N. Bogdanchikova, F. C. Meunier, M. Avalos-Borja, et al., Appl. Catal. B, 36, 287-297 (2002).CrossRefGoogle Scholar
  7. 7.
    B. Inceesungvorn, J. López-Castro, and J. J. Calvino, Appl. Catal. A, 391, 187-193 (2011).CrossRefGoogle Scholar
  8. 8.
    A. Iglesias-Juez, M. Fernandez-Garcia, A. Martinez-Arias, et al., Top. Catal., 30/31, 65-70 (2004).CrossRefGoogle Scholar
  9. 9.
    V. Kumar Kaushik, J. Electron Spectrosc. Relat. Phenom., 56, 273-277 (1991).CrossRefGoogle Scholar
  10. 10.
    D. Briggs and M. P. Seah, Practical Surface Analysis: Auger and X-Ray Photoelectron Spectroscopy, Wiley, Chichester (1990).Google Scholar
  11. 11.
    F. C. Meunier, J. P. Breen, V. Zuzaniuk, et al., J. Catal., 187, 493-505 (1999).CrossRefGoogle Scholar
  12. 12.
    X. Zhang, H. He, H. Gao, and Y. Yu, Spectrochim. Acta A, 71, 1446-1451 (2008).CrossRefGoogle Scholar
  13. 13.
    S. Golay, R. Doepper, and A. Renken, Appl. Catal. A, 172, 97-106 (1998).CrossRefGoogle Scholar
  14. 14.
    Y. Yu, H. He, and Q. Feng, J. Phys. Chem. B, 107, 13090-13092 (2003).CrossRefGoogle Scholar
  15. 15.
    G. A. Voronova, O. V. Vodyankina, V. N. Belousova, et al., Kinet. Katal., 44, No. 5, 713-717 (2003).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • N. A. Popovich
    • 1
  • P. I. Kiriienko
    • 1
  • S. A. Solov’ev
    • 1
  • S. N. Orlik
    • 1
  • S. Dzwigaj
    • 2
  1. 1.L. V. Pisarzhevskii Institute of Physical Chemistry, National Academy of Sciences of UkraineKyivUkraine
  2. 2.Laboratoire de Réactivité de Surface, UPMC, CNRS, UMR 7197Ivry-sur-SeineFrance

Personalised recommendations