Skip to main content

Advertisement

Log in

Effect of structural and thermodynamic factors on the sorption of hydrogen by metal–organic framework compounds

  • Published:
Theoretical and Experimental Chemistry Aims and scope

The characteristics of the sorption of hydrogen by metal–organic framework compounds (MOF) were examined, and the structural and thermodynamic factors that favor the sorption of H2 by such substances were determined. The effect of the structure of the MOF and the size and geometry of the pores on the sorption characteristics was analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. High Level Group of the European Commission, September 2003. Market Development of Alternative Fuels. Report of the Alternative Fuels Contact Group, December, 2003.

  2. Hydrogen Energy and Fuel Cells. A Vision of Our Future. Directorate-General for Research, 2003, Directorate-General for Energy and Transport EUR 20719 EN.

  3. J. A. Ritter, A. D. Ebner, J. Wang, and R. Zidan, Mater. Today, 6, 18 (2003).

    Article  CAS  Google Scholar 

  4. Hydrogen Storage Mater. Workshop Proc., United States Department of Energy, August 14-15, 2002. http://www.eere.energy.gov/hydrogenandfuelcells/pdfs/h2_stor_mat_work_proceedings.pdf

  5. B. P. Tarasov and M. V. Lototskii, Ros. Khim. Zh., 50, 5 (2006).

    CAS  Google Scholar 

  6. J. L. C. Rowsell and O. M. Yaghi, Angew. Chem. Int. Ed., 44, 4670 (2005).

    Article  CAS  Google Scholar 

  7. V. I. Isaeva and L. M. Kustov, Ros. Khim. Zh., 50, 56 (2006).

    CAS  Google Scholar 

  8. D. J. Collins and H.-C. Zhou, J. Mater. Chem., 17, 3154 (2007).

    Article  CAS  Google Scholar 

  9. Basic Research Needs for the Hydrogen Economy, United States Department of Energy, Report of the Basic Energy Sciences Workshop on Hydrogen Production, Storage, and Use, May 13-15 (2003). http://www.sc.doe.gov/bes/hydrogen.pdf

  10. E. Tzimas, C. Filiou, S. D. Peteves, and J.-B. Veyret, Hydrogen Storage: State-of-the-Art and Future Perspective, European Commission DG JRC Institute for Energy, Petten (2003). http://www.jrc.nl/publ/2003_publ.html.

  11. M. Jacoby, Chem. Eng. News, 22, 42 (2005).

    Google Scholar 

  12. A. Züttel, Mater. Today, 6, 24 (2003).

    Article  Google Scholar 

  13. M. Hirscher, M. Becher, M. Haluska, et al., J. Alloys Comp., 356/357, 433 (2003).

    Article  Google Scholar 

  14. H.-M. Cheng, Q.-H. Yang, and C. Liu, Carbon, 39, 1447 (2001).

    Article  CAS  Google Scholar 

  15. A. M. Seayad and D. M. Antonelli, Adv. Mater., 16, 765 (2004).

    Article  CAS  Google Scholar 

  16. P. Bénard and R. Chahine, Langmuir, 17, 1950 (2001).

    Article  Google Scholar 

  17. M. R. Smith Jr., E. W. Bittner, W. Shi, et al., J. Phys. Chem. B, 107, 3752 (2003).

    Article  CAS  Google Scholar 

  18. L. Regli, A. Zecchina, J. G. Vitillo, et al., Phys. Chem. Chem. Phys., 7, 3197 (2005).

    Article  CAS  Google Scholar 

  19. M. G. Nijkamp, J. E. M. J. Raaymakers, A. J. van Dillen, and K. P. de Jong, Appl. Phys. A, 72, 619 (2001).

    Article  CAS  Google Scholar 

  20. S. N. Klyamkin, Ros. Khim. Zh., 50, 49 (2006).

    CAS  Google Scholar 

  21. B. P. Tarasov, M. V. Lototskii, and V. A. Yartys’, Ros. Khim. Zh., 50, 34 (2006).

    CAS  Google Scholar 

  22. N. B. McKeown, B. Gahnem, K. J. Msayib, et al., Angew. Chem. Int. Ed., 45, 1804 (2006).

    Article  CAS  Google Scholar 

  23. H. M. El-Kaderi, J. R. Hunt, J. L. Mendoza-Cortés, et al., Science, 316, 268 (2007).

    Article  CAS  Google Scholar 

  24. M. Mastalerz, Angew. Chem. Int. Ed., 47, 445 (2008).

    Article  CAS  Google Scholar 

  25. A. G. Wong-Foy, A. J. Matzger, and O. M. Yaghi, J. Am. Chem. Soc., 128, 3494 (2006).

    Article  CAS  Google Scholar 

  26. X. Lin, J. Jia, X. Zhao, et al., Angew. Chem. Int. Ed., 45, 7358 (2006).

    Article  CAS  Google Scholar 

  27. S. Takamizawa, E. Nakata, and T. Saito, Inorg. Chem. Commun., 7, 125 (2004).

    Article  CAS  Google Scholar 

  28. R. Nukada, W. Mori, S. Takamizawa, et al., Chem. Lett., 367 (1999).

  29. M. Eddaoudi, J. Kim, N. Rosi, et al., Science, 295, 469 (2002).

    Article  CAS  Google Scholar 

  30. J. Y. Lee, J. Li, and J. Jagiello, J. Solid State Chem., 178, 2527 (2005).

    Article  CAS  Google Scholar 

  31. M. Jansen and J. C. Schön, Angew. Chem. Int. Ed., 45, 3406 (2006).

    Article  CAS  Google Scholar 

  32. J. Miyamoto, Y. Hattori, D. Noguchi, et al., J. Am. Chem. Soc., 128, 12636 (2006).

    Article  CAS  Google Scholar 

  33. B. Panella, K. Hönes, U. Müller, et al., Angew. Chem. Int. Ed., 47, 2138 (2008).

    Article  CAS  Google Scholar 

  34. R. E. Morris and P. S. Wheatley, Angew. Chem. Int. Ed., 47, 4966 (2008).

    Article  CAS  Google Scholar 

  35. T. Düren, F. Millange, G. Férey, et al., J. Phys. Chem. C, 111, 15350 (2007).

    Article  Google Scholar 

  36. A. J. Fletcher, K. M. Thomas, and M. J. Rosseinsky, J. Solid State Chem., 178, 2491 (2005).

    Article  CAS  Google Scholar 

  37. K. S. W. Sing, D. H. Everett, R. A. W. Haul, et al., Pure. Appl. Chem., 57, 603 (1985).

    Article  CAS  Google Scholar 

  38. H. Frost, T. Düren, and R. Q. Snurr, J. Phys. Chem. B, 110, 9565 (2006).

    Article  CAS  Google Scholar 

  39. M. Duncă and J. R. Long, J. Am. Chem. Soc., 127, 9376 (2005).

    Article  Google Scholar 

  40. M. M. L. R. Carrott, A. J. E. Candeias, P. J. M. Carrott, et al., Micropor. Mesopor. Mater., 47, 323-337 (2001).

    Article  Google Scholar 

  41. S. V. Kolotilov, A. V. Shvets, and V. N. Solomakha, Teor. Éksp. Khim., 42, No. 1, 39-43 (2006). [Theor. Experim. Chem., 42, No. 1, 43-47 (2006).]

    Google Scholar 

  42. S. V. Kolotilov, N. N. Stepanenko, Zh. V. Chernenko, and A. V. Shvets, Teor. Éksp. Khim., 44, No. 1, 58-63 (2008). [Theor. Experim. Chem., 44, No. 1, 60-65 (2008).]

    Google Scholar 

  43. S. V. Kolotilov, O. Cador, S. Golhen, et al., Inorg. Chim. Acta, 360, 1883 (2007).

    Article  CAS  Google Scholar 

  44. J. L. C. Rowsell and O. M. Yaghi, J. Am. Chem. Soc., 128, 1304 (2006).

    Article  CAS  Google Scholar 

  45. J. Y. Lee, L. Pan, S. P. Kelly, et al., Adv. Mater., 17, 2703 (2005).

    Article  CAS  Google Scholar 

  46. B. Chen, N. W. Ockwig, A. R. Millward, et al., Angew. Chem. Int. Ed., 44, 4745 (2005).

    Article  CAS  Google Scholar 

  47. D. P. Broom and P. Moretto, J. Alloys Comp., 446/447, 687 (2007).

    Article  Google Scholar 

  48. D. P. Broom, Int. J. Hydrogen Energy, 32, 4871 (2007).

    Article  CAS  Google Scholar 

  49. K. P. Mishchenko and A. A. Ravdel’ (eds.), Concise Handbook of Physicochemical Quantities [in Russian], Khimiya, Leningrad (1974), p. 171.

    Google Scholar 

  50. S. L. James, Chem. Soc. Rev., 32, 276 (2003).

    Article  CAS  Google Scholar 

  51. J. Kim, B. Chen, T. M. Reineke, et al., J. Am. Chem. Soc., 123, 8239 (2001).

    Article  CAS  Google Scholar 

  52. O. M. Yaghi, M. O’Keeffe, N. W. Ockwig, et al., Nature, 423, 705 (2003).

    Article  CAS  Google Scholar 

  53. S. Natarajan and S. Mandal, Angew. Chem. Int. Ed., 47, 4798 (2008).

    Article  CAS  Google Scholar 

  54. M. Eddaoudi, D. B. Moler, H. Li, et al., Accounts Chem. Res., 34, 319-330 (2001).

    Article  CAS  Google Scholar 

  55. J. L. C. Rowsell, A. R. Millward, K. S. Park, and O. M. Yaghi, J. Am. Chem. Soc., 126, 5666 (2004).

    Article  CAS  Google Scholar 

  56. S. S. Kaye and J. R. Long, J. Am. Chem. Soc., 127, 6506 (2005).

    Article  CAS  Google Scholar 

  57. H. Chun, D. N. Dybtsev, H. Kim, and K. Kim, Chem. Eur. J., 11, 3521 (2005).

    Article  CAS  Google Scholar 

  58. D. N. Dybtsev, H. Chun, and K. Kim, Angew. Chem. Int. Ed., 43, 5033 (2004).

    Article  CAS  Google Scholar 

  59. H. K. Chae, D. Y. Siberio-Pérez, J. Kim, et al., Nature, 427, 523 (2004).

    Article  CAS  Google Scholar 

  60. D. Sun, S. Ma, Y. Ke, et al., J. Am. Chem. Soc., 128, 3896 (2006).

    Article  CAS  Google Scholar 

  61. B. Kesanli, Y. Cui, M. R. Smith, et al., Angew. Chem. Int. Ed., 44, 72 (2005).

    Article  CAS  Google Scholar 

  62. M. Latroche, S. Surblé, C. Serre, et al., Angew. Chem. Int. Ed., 45, 8227 (2006).

    Article  CAS  Google Scholar 

  63. Y. Wang, P. Cheng, J. Chen, et al., Inorg. Chem., 46, 4530 (2007).

    Article  CAS  Google Scholar 

  64. G. Férey, M. Latroche, C. Serre, et al., Chem. Commun., 2976 (2003).

  65. S. Surblé, F. Millange, C. Serre, et al., J. Am. Chem. Soc., 128, 14889 (2006).

    Article  Google Scholar 

  66. K. S. Park, Z. Ni, A. P. Côté, et al., Proc. Natl. Acad. Sci. USA, 103, 10186 (2006).

    Article  CAS  Google Scholar 

  67. B. Chen, S. Ma, F. Zapata, et al., Inorg. Chem., 45, 5718 (2006).

    Article  CAS  Google Scholar 

  68. P. D. C. Dietzel, B. Panella, M. Hirscher, et al., Chem. Commun., 959 (2006).

  69. Y.-G. Lee, H. R. Moon, Y. E. Cheon, and M. P. Suh, Angew. Chem. Int. Ed., 47, 7741 (2008).

    Article  CAS  Google Scholar 

  70. X.-S. Wang, S. Ma, P. M. Forster, et al., Angew. Chem. Int. Ed., 47, 7263 (2008).

    Article  CAS  Google Scholar 

  71. H. J. Buser, D. Schwarzenbach, W. Petter, and A. Ludi, Inorg. Chem., 16, 2704 (1977).

    Article  CAS  Google Scholar 

  72. K. W. Chapman, P. J. Chupas, E. R. Maxey, and J. W. Richardson, Chem. Commun., 4013 (2006).

  73. S. K. Bhatia and A. L. Myers, Langmuir, 22, 1688 (2006).

    Article  CAS  Google Scholar 

  74. G. Garberoglio, A. I. Skoulidas, and J. K. Johnson, J. Phys. Chem. B, 109, 13094 (2005).

    Article  CAS  Google Scholar 

  75. J. Eckert and G. J. Kubas, J. Phys. Chem., 97, 2378 (1993).

    Article  CAS  Google Scholar 

  76. M. Dincă and J. R. Long, Angew. Chem. Int. Ed., 47, 6766 (2008).

    Article  Google Scholar 

  77. E. Poirier, R. Chahine, P. Bénard, et al., Langmuir, 22, 8784 (2006).

    Article  CAS  Google Scholar 

  78. S. K. Bhatia and H. K. Shethna, Langmuir, 10, 3230-3243 (1994).

    Article  CAS  Google Scholar 

  79. D. Ramirez, S. Qi, M. J. Rood, and K. Hay, J. Environ. Sci. Technol., 39, 5864 (2005).

    Article  CAS  Google Scholar 

  80. B. Panella, M. Hirscher, H. Putter, and U. Müller, Adv. Funct. Mater., 16, 520 (2006).

    Article  CAS  Google Scholar 

  81. A. C. Sudik, A. R. Millward, N. W. Ockwig, et al., J. Am. Chem. Soc., 127, 7110 (2005).

    Article  CAS  Google Scholar 

  82. Z. Yang, Y. Xia, and R. Mokaya, J. Am. Chem. Soc., 129, 1673 (2007).

    Article  CAS  Google Scholar 

  83. X. Hu, B. O. Skadtchenko, Mi. Trudeau, and D. M. Antonelli, J. Am. Chem. Soc., 128, 11740 (2006).

    Article  CAS  Google Scholar 

  84. V. P. Vasil’ev, Thermodynamic Characteristics of Solutions of Electrolytes [in Russian], Vysshaya Shkola, Moscow (1982).

    Google Scholar 

  85. J. Taylor, Introduction to Theory of Errors [Russian translation], Mir, Moscow (1985).

    Google Scholar 

  86. J. T. Culp, C. Matranga, M. Smith, et al., J. Phys. Chem. B, 110, 8325 (2006).

    Article  CAS  Google Scholar 

  87. S. S.-Y. Chui, S. M.-F. Lo, J. P. H. Charmant, et al., Science, 283, 1148 (1999).

    Article  CAS  Google Scholar 

  88. M. O’Keeffe, M. Eddaoudi, H. Li, et al., J. Solid. State. Chem., 152, 3 (2000).

    Article  Google Scholar 

  89. P. Krawiec, M. Kramer, M. Sabo, et al., Adv. Eng. Mater., 8., 293-296 (2006).

    Article  CAS  Google Scholar 

  90. D. Basmadjian, Can. J. Chem., 38, 141 (1960).

    Article  CAS  Google Scholar 

  91. X. B. Zhao, B. Xiao, A. J. Fletcher, and K. M. Thomas, J. Phys. Chem. B, 109, 8880 (2005).

    Article  CAS  Google Scholar 

  92. F. Stéphanie-Victoire, A.-M. Goulay, and E. Cohen de Lara, Langmuir, 14, 7255 (1998).

    Article  Google Scholar 

  93. G. Férey, C. Serre, C. Mellot-Draznieks, et al., Angew. Chem. Int. Ed., 43, 6296 (2004).

    Article  Google Scholar 

  94. G. Férey, C. Mellot-Draznieks, C. Serre, et al., Science, 309, 2040 (2005).

    Article  Google Scholar 

  95. S. V. Kolotilov, A. V. Shvets, and N. V. Kas’yan, Teor. Éksp. Khim., 42, No. 5, 265-270 (2006). [Theor. Experim. Chem., 42, No, 5, 271-276 (2006).]

    Google Scholar 

  96. H. Chun, H. Jung, G. Koo, et al., Inorg. Chem., 47, 5355 (2008).

    Article  CAS  Google Scholar 

  97. N. L. Rosi, J. Eckert, M. Eddaoudi, et al., Science, 300, 1127 (2003).

    Article  CAS  Google Scholar 

  98. L. Pan, M. B. Sander, X. Huang, et al., J. Am. Chem. Soc., 126, 1308 (2004).

    Article  CAS  Google Scholar 

  99. K. L. Mulfort and J. T. Hupp, Inorg. Chem., 47, 7936 (2008).

    Article  CAS  Google Scholar 

  100. P. M. Forster, J. Eckert, J.-S. Chang, et al., J. Am. Chem. Soc., 125, 1309 (2003).

    Article  CAS  Google Scholar 

  101. Ya. D. Lampeka and L. V. Tsimbal, Teor. Éksp. Khim., 40, No. 6, 331-357 (2004). [Theor. Experim. Chem., 40, No. 6, 345-371 (2004).]

    Google Scholar 

  102. O. K. Farha, A. M. Spokoyny, K. L. Mulfort, et al., J. Am. Chem. Soc., 129, 12680 (2007).

    Article  CAS  Google Scholar 

  103. J. H. Yoon, S. B. Choi, Y. J. Oh, et al., Catal. Today, 120, 324 (2007).

    Article  CAS  Google Scholar 

  104. K. W. Chapman, P. D. Southon, C. L. Weeks, and C. J. Kepert, Chem. Commun., 3322 (2005).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Kolotilov.

Additional information

Translated from Teoreticheskaya i Éksperimental’naya Khimiya, Vol. 45, No. 2, pp. 67-87, March-April, 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kolotilov, S.V., Pavlishchuk, V.V. Effect of structural and thermodynamic factors on the sorption of hydrogen by metal–organic framework compounds. Theor Exp Chem 45, 75–97 (2009). https://doi.org/10.1007/s11237-009-9068-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11237-009-9068-7

Key words

Navigation