Abstract
The present state of research on the production and modeling of nanostructures based on titanium carbide-a typical representative of an extensive class of carbides of d-and f-metals-is reviewed. Methods for the synthesis of various Ti-C nanostructures (molecular clusters, nanocrystallites, nanospheres, nanofibers, nanowires) are examined, and their morphology, atomic structure, and known physicochemical characteristics are described. Theoretical models of the atomic structure and properties of new types of nanostructures in the titanium-carbon system (endo-and exohedral titanofullerenes, “hybrid” structures based on carbon nanotubes, the so-called peapods, nanocables, and a number of others) and the prospects for their application as components of nanoceramics, hydrogen accumulators, materials for spintronics, etc. are discussed.
References
J. Goldschmidt, Interstitial Phases [Russian translation], Mir, Moscow (1971).
G. V. Samsonov, G. Sh. Upadkhaya, and V. S. Heshpor, Physical Materials Behavior of Carbides [in Russian], Metallurgiya, Moscow (1976).
L. Thom, Carbides and Nitrides of Transition Metals [Russian translation], Mir, Moscow (1974).
G. P. Shveikin, S. I. Alyamovskii, Yu. G. Zainulin, et al., Compounds with Variable Composition and Their Solid Solutions [in Russian], UNTs Akad. Nauk SSSR, Sverdlovsk (1984).
T. Ya. Kosolapova (ed.), Properties, Production, and Application of Refractory Compounds [in Russian], Naukova Dumka, Kiev (1986).
G. V. Samsonov and I. M. Vinnitskii, Refractory Compounds [in Russian], Metallurgiya, Moscow (1976).
A. I. Gusev, Nanocrystalline Materials: Methods of Production and Properties [in Russian], Izd. Ural. Otd. RAN (1998).
A. I. Gusev and A. A. Rempel, Nanocrystalline Materials, Int. Sci. Publ., Cambridge (2004).
R. A. Andrievskii, Usp. Khim., 74, No. 12, 1163–1175 (2005).
A. I. Gusev, Nanomaterials, Nanostructures, Nanotechnologies [in Russian], Fizmatlit-Nauka, Moscow (2005).
A. I. Gusev, Usp. Khim., 71, No. 6, 507–532 (2002).
S. P. Dodd, M. Cankurtaran, and B. James, J. Mater. Sci., 38, 1107–1115 (2003).
A. L. Ivanovskii, V. P. Zhukov, and V. A. Gubanov, Electronic Structure of Refractory Carbides and Nitrides of Transition Metals, Nauka, Moscow (1990).
A. I. Gusev, Physical Chemistry of Nonstoichiometric Refractory Compounds [in Russian], Nauka, Moscow (1999).
V. N. Lipatnikov and A. I. Gusev, Ordering in Titanium and Vanadium Carbides, Ural. Otd. RAN, Ekaterinburg (2000).
A. I. Gusev and A. A. Rempel, Nonstoichiometry, Order, and Disorder in a Solid [in Russian], Ural. Otd. RAN, Ekaterinburg (2001).
V. M. Cherkashenko, S. Z. Nazarova, A. I. Gusev, and A. L. Ivanovskii, Zh. Struktur. Khim., 42, No. 6, 1196–1221 (2001).
B. C. Guo, R. P. Kerns, and A. W. Castleman, Science, 255, 1411–1413 (1992).
B. C. Guo, S. Wei, J. Purnell, et al., Science, 256, 515–516 (1992).
T. Pradeep and P. T. Manoharan, Current Sci., 68, No. 10, 1017–1026 (1995).
H. T. Deng, K. P. Kern, and A. W. Castleman, J. Am. Chem. Soc., 118, No. 2, 446–450 (1996).
S. F. Cartier, B. D. May, and A. W. Castleman, J. Phys. Chem., 100, No. 20, 8175–8179 (1996).
A. W. Castleman and K. H. Bowen, J. Phys. Chem., 100, No. 31, 12911–12944 (1996).
R. King, Izv. Akad. Nauk, Ser. Khim., No. 5, 862–868 (1998).
R. Selvan and T. Pradeep, Current Sci., 74, No. 8, 666–680 (1998).
M. M. Rohmer, M. Benard, and J. M. Poblet, Chem. Rev., 100, No. 2, 495–542 (2000).
I. Dance, J. Am. Chem. Soc., 118, No. 11, 2699–2707 (1996).
S. Li, H. B. Wu, and L. S. Wang, J. Am. Chem. Soc., 119, No. 32, 7417–7422 (1997).
A. A. Sofronov, Yu. N. Makurin, M. V. Ryzhkov, and A. L. Ivanovskii, Koordinats. Khim., 25, No. 8, 597–603 (1999).
J. Munoz, M. M. Rohmer, M. Benard, et al., J. Phys. Chem., 103, No. 24, 4762–4768 (1999).
P. Liu, J. A. Rodriguez, H. Hou, J. T. Muckerman, J. Chem. Phys., 118, No. 17, 7737–7740 (2003).
P. Liu and J. A. Rodriguez, J. Chem. Phys., 120, No. 11, 5414–5421 (2004).
P. Liu, J. M. Lightstone, M. J. Patterson, et al., J. Phys. Chem., 110, No. 14, 7449–7455 (2006).
L. S. Wang, S. Li, and H. Wu, J. Chem. Phys., 100, No. 50, 19211–19214 (1996).
S. Li, H. Wu, and L. S. Wang, J. Am. Chem. Soc., 119, No. 32, 7417–7422 (1997).
A. N. Enyashin and A. L. Ivanovskii, Zh. Neorg. Khim., 50, No. 5, 743–746 (2005).
M. F. Ge, J. K. Feng, C. Yang, et al., Int. J. Quantum Chem., 71, No. 4, 313–318 (1999).
L. S. Wang, X. B. Wang, H. B. Wu, and H. S. Cheng, J. Am. Chem. Soc., 120, No. 26, 6556–6562 (1998).
J. O. Joswig, M. Springborg, and G. Seifert, Phys. Chem. Chem. Phys., 3, No. 23, 5130–5134 (2001).
H. J. Zhai, B. C. Liu, Z. W. Zhou, et al., Chinese Phys. Lett., 18, No. 12, 1582–1585 (2001).
S. F. Cartier, B. D. May, and A. W. Castleman, J. Chem. Phys., 100, No. 7, 5384–5386 (1994).
H. T. Deng, B. C. Guo, K. P. Kerns, and A. W. Castleman, Int. J. Mass Spectrom. Ion Proc., 138, 275–280 (1994).
H. T. Deng, B. C. Guo, K. P. Kerns, and A. W. Castleman, J. Phys. Chem., 98, No. 12, 13373–13380 (1994).
S. F. Cartier, B. D. May, and A. W. Castleman, J. Chem. Phys., 104, No. 10, 3423–3432 (1996).
B. D. May, S. E. Kooi, B. J. Toleno, and A. W. Castleman, J. Chem. Phys., 106, No. 6, 2231–2238 (1997).
S. E. Kooi and A. W. Castleman, J. Chem. Phys., 108, No. 21, 8864–8869 (1998).
H. Sakurai, S. E. Kooi, and A. W. Castleman, J. Clust. Sci., 10, 493–499 (1999).
V. V. Ivanovskaya, A. A. Sofronov, Yu. N. Makurin, and A. L. Ivanovskii, Koordinats. Khim., 27, No. 11, 808–818 (2001).
V. V. Ivanovskaya, A. A. Sofronov, Yu. N. Makurin, and A. L. Ivanovskii, Zh. Neorg. Khim., 47, No. 6, 972–980 (2002).
S. N. Khanna, Phys. Rev. B., 51, No. 16, 10965–10967 (1995).
A. L. Ivanovskii, Zh. Neorg. Khim., 48, No. 6, 1–15 (2003).
G. S. Zakharova, A. N. Enyashin, V. V. Ivanovskaya, et al., Inzhener. Fiz., No. 5, 19–41 (2003).
A. L. Ivanovskii, Alternativ. Energet. Ekolog. (ISJAEE), No. 7(15), 28–40 (2004).
A. L. Ivanovskii, Zh. Neorg. Khim., 50, No. 9, 1408–1422 (2005).
G. S. Zakharova, V. L. Volkov, V. V. Ivanovskaya, and A. L. Ivanovskii, Usp. Khim., 74, No. 7, 651–685 (2005).
G. S. Zakharova, V. L. Volkov, V. V. Ivanovskaya, and A. L. Ivanovskii, Nanotubes and Related Nanostructures of Metal Oxides [in Russian], Ural. Otd. RAN, Ekaterinburg (2005).
V. V. Ivanovskaya, Yu. N. Makurin, and A. L. Ivanovskii, Nanostructures Novel Architectures, Nova Sci. Publ., New York (2005), pp. 9–24.
V. V. Ivanovskaya, A. N. Enyashin, Yu. N. Makurin, and A. L. Ivanovskii, Nanotekhnika, No. 1(5), 126–140 (2006).
A. A. Sofronov, V. V. Ivanovskaya, Yu. N. Makurin, Koordinats. Khim., 28, No. 9, 618–629 (2002).
V. V. Ivanovskaya, A. A. Sofronov, and A. L. Ivanovskii, Teor. Éksp. Khim., 37, No. 6, 331–335 (2001).
A. A. Sofronov, V. V. Ivanovskaya, Yu. N. Makurin, A. L. Ivanovskii, Chem. Phys. Lett., 351, Nos. 1/2, 35–41 (2002).
V. V. Ivanovskaya, A. A. Sofronov, and A. L. Ivanovskii, Phys. Lett. A, 297, 436–441 (2002).
V. V. Ivanovskaya, A. A. Sofronov, Yu. N. Makurin, and A. L. Ivanovskii, J. Mol. Struct. THEOCHEM, 594, Nos. 1/2, 31–39 (2002).
A. V. Eletskii and B. M. Smirnov, Usp. Fiz. Nauk, 165, No. 9, 977–1009 (1995).
T. Guo, M. D. Diener, T. Chai, et al., Science, 257, 1661–1664 (1992).
J. Kim, G. Galli, J. W. Wilkins, and A. J. Canning, J. Chem. Phys., 108, No. 6, 2631–2637 (1998).
A. N. Enyashin, V. V. Ivanovskaya, Yu. N. Makurin, and A. L. Ivanovskii, Fiz. Tverd. Tela, 46, No. 8, 1522–1525 (2004).
T. Guo, R. E. Smalley, and G. E. Scuseria, J. Chem. Phys., 99, No. 1, 352–359 (1993).
O. D. Haberlen, N. Rosch, and B. I. Dunlap, Chem. Phys. Lett., 200, No. 4, 418–423 (1992).
M. R. Pederson and N. Laouini, Phys. Rev. B, 48, No. 4, 2733–2737 (1993).
A. L. Ivanovskii, Yu. N. Makurin, and A. A. Sofronov, Koordinats. Khim., 25, No. 10, 763–768 (2000).
Yu. N. Makurin, A. A. Sofronov, A. I. Gusev, and A. L. Ivanovskii, Chem. Phys., 270, No. 2, 293–308 (2001).
B. Cao, M. Hasegawa, K. Okada, et al., J. Am. Chem. Soc., 123, No. 39, 9679–9680 (2001).
B. Cao, K. Suenaga, T. Okazaki, and H. Shinohara, J. Phys. Chem. B, 106, No. 36, 9295–9298 (2002).
R. Jaffio, A. Debarre, C. Julian, et al., Phys. Rev. B, 68, No. 1, 014105 (1–8) (2003).
H. Shinohara, Rep. Progr. Phys., 63, No. 6, 843–892 (2000).
K. Akiyama, K. Sueki, T. Kodama, et al., Chem. Phys. Lett., 317, Nos. 3–5, 490–496 (2000).
A. H. Enyashin, Yu. N. Makurin, and A. L. Ivanovskii, Comput. Mater. Sci., 36, 26–29 (2006).
A. Debarre, R. Jaffiol, C. Julien, et al., Chem. Phys. Lett., 380, Nos. 1/2, 6–11 (2003).
A. N. Enyashin and A. L. Ivanovskii, Zh. Neorg. Khim., 51, No. 9, 1483–1492 (2006).
K. S. Troche, V. R. Coluci, S. F. Braga, et al., NANO Lett., 5, No. 2, 349–355 (2005).
A. Leonhardt, A. Ritschel, R. Kozhuharova, et al., Diamond Rel. Mater., 12, Nos. 3–7, 790–795 (2003).
Y. J. Kang, J. Choi, C. Y. Moon, and K. J. Chang, Phys. Rev. B, 71, No. 11, 115441 (1–9) (2005).
Y. Ch. Su and W. K. Hsu, Appl. Phys. Lett., 87, No. 23, 233112 (1–3) (2005).
Z. J. Liu, R. C. Che, Z. D. Xu, and L. M. Peng, Synth. Met., 128, No. 2, 191–195 (2002).
B. C. Satishkumar, A. Govindaraj, P. V. Vanitha, et al., Chem. Phys. Lett., 362, Nos. 3/4, 301–308 (2002).
M. M. Rahman, M. Kisaku, T. Kishi, et al., J. Phys.: Condens. Matter., 16, No. 48, S5755–S5759 (2004).
M. Kisaku, M. Rahman, T. Kishi, et al., Jpn. J. Appl. Phys. A, 44, No. 2, 882–888 (2005).
S. Karmakar, S. M. Sharma, P. V. Teredesa, and A. K. Sood, Phys. Rev. B, 69, No. 16, 165414 (1–6) (2004).
H. Terrones, F. López-Urías, E. Muñoz-Sandoval, et al., Solid State Sci., 8, Nos. 3/4, 303–320 (2006).
V. V. Ivanovskaya and A. L. Ivanovskii, Materialovedenie, No. 12, 10–13 (2006).
V. V. Ivanovskaya, Ch. Köhler, and G. Seifert, Phys. Rev. B, 75, No. 7, 075410 (1–7) (2007).
F. Tast, N. Malinowski, S. Frank, et al., Phys. Rev. Lett., 77, No. 17, 3529–3532 (1996).
H. Hogberg, J. O. Malm, A. Talyzin, et al., J. Electrochem. Soc., 147, No. 9, 3361–3369 (2000).
Z. G. Liu, K. Tsuchiya, and M. Umemoto, J. Mater. Sci., 37, No. 6, 1229–1235 (2002).
J. B. Zang, J. Lu, Y. H. Wang, et al., Key Eng. Mater., 304/305, 48–51 (2006).
M. R. Pederson, D. V. Porezag, D. C. Patton, and E. Kaxiras, Chem. Phys. Lett., 303, Nos. 3/4, 373–378 (1999).
M. Nyberg, Y. Luo, L. Qian, et al., Phys. Rev. B, 63, No. 11, 115117 (1–6) (2001).
T. Yildirim, J. Íñiguez, and S. Ciraci, Phys. Rev. B, 72, No. 15, 153403 (1–4) (2005).
N. Akman, E. Durgun, T. Yildirim, et al., J. Phys.: Condens. Matter, 18, No. 41, 9509–9517 (2006).
T. Yildirim and S. Ciraci, Phys. Rev. Lett., 94, No. 17, 175501 (1–4) (2005).
S. Dag, Y. Ozturk, S. Ciraci, et al., Phys. Rev. B, 72, No. 15, 155404 (1–8) (2005).
S. Dag, S. Tongay, T. Yildirim, et al., Phys. Rev. B, 72, No. 15, 155444 (1–7) (2005).
S. Dag and S. Ciraci, Phys. Rev. B, 71, No. 16, 165414 (1–8) (2005).
S. B. Fagan, A. Fazzio, and R. Mota, Nanotechnology, 17, No. 4, 1154–1159 (2006).
I. R. Shein, V. L. Kozhevnikov, and A. L. Ivanovskii, Pis’ma Zh. Éksp. Teor. Fiz., 82, No. 4, 239–242 (2005).
I. R. Shein, B. L. Kozhevnikov, and A. L. Ivanovskii, Fiz. Tekhn. Poluprov., 40, No. 11, 1295–1299 (2006).
I. Zutic, J. Fabian, and S. Das Sarma, Rev. Mod. Phys., 76, 323–354 (2004).
T. Z. Meng, C. Y. Wang, and S. Y. Wang, J. Phys.: Condens. Matter, 18, No. 46, 10521–10528 (2006).
J. Zhao, X. Ai, X. P. Huang, and Z. Lu, J. Adv. Mater. Manufact. Sci. Technol. Mater., 471/472, 167–171 (2004).
K. Konopka, A. Biedunkiewicz, A. Boczkowska, et al., From Nanopowders to Func. Mater. Solid State Phenom., 106, 141–144 (2005).
N. Guskos, A. Biedunkiewicz, J. Typec, et al., Rev. Adv. Mater. Sci., 8, No. 1, 49–52 (2004).
Q. Lu, J. Hu, K. Tang, et al., Chem. Phys. Lett., 314, Nos. 1/2, 37–39 (1999).
R. Alexandrescu, E. Borsella, S. Botti, et al., J. Mater. Sci., 32, 5629–5635 (1997).
Y. Leconte, H. Maskrot, N. Herlin-Boime, et al., Glass Phys. Chem., 31, No. 4, 510–518 (2005).
A. Agrawal, J. Cizeron, and V. L. Colvin, Microsc. Microanal., 4, No. 3, 269–277 (1998).
L. Shi, Y. Gu, L. Chen, et al., Chem. Lett., 33, 56–57 (2004).
A. Fukunaga, S. Chu, and M. E. McHenry, J. Mater. Sci. Lett., 18, No. 6, 431–433 (1999).
X. Feng, Y. Bai, B. Lu, et al., J. Cryst. Growth, 264, 316–319 (2004).
C. H. Liang, G. W. Meng, W. Chen, et al., J. Cryst. Growth, 220, 296–300 (2000).
H. Dai, E. W. Wang, Z. Y. Lu, et al., Nature (London), 375, 769–772 (1995).
S. R. Qi, X. T. Huang, Z. W. Gan, et al., J. Cryst. Growth, 219, 485–488 (2000).
X. Wang, J. Lu, P. Gou, and Y. Xie, Chem. Lett., 31, 820–821 (2002).
R. Sergiienko, E. Shibata, H. Suwa, et al., Ultrasonics Sonochem., 13, 6–12 (2006).
A. Ikegami, Y. Kimura, H. Suzuki, et al., Surface Sci., 540, Nos. 2/3, 395–400 (2003).
Y. H. Chang, C. W. Chin, Y. C. Chen, et al., J. Mater. Chem., 12, No. 8, 2189–2191 (2002).
D. W. Lee, S. Alexandrovskii, and B. K. Kim, Mater. Chem. Phys., 88, 23–26 (2004).
Y. Bai, X. Feng, B. Lu, et al., Chem. Phys. Lett., 388, No. 1, 58–61 (2004).
K. Tang, G. Shen, D. Chen, et al., Chem. Lett., 32, 116–117 (2003).
L. Tong and R. G. Reddy, Scripta Mater., 52, 1253–1258 (2005).
D. W. Lee and B. K. Kim, Scripta Mater., 48, No. 11, 1513–1518 (2003).
Y. Shin, X. S. Li, C. Wand, et al., Adv. Mater., 16, No. 14, 1212–1215 (2004).
Y. Gu, L. Chen, Z. Li, et al., Carbon, 42, No. 1, 235–238 (2004).
M. S. El-Eskandarany, M. Omori, T. Kamiyama, et al., Sci. Rep. Res. Inst. Tohoku Univ. Ser. A, 43, No. 2, 181–193 (1997).
T. Weissgarber and B. F. Kieback, Mater. Sci. Forum, 343, No. 3, 275–283 (2000).
J. L. Li, G. Y. Cao, Y. Zhou, et al., J. Inorg. Mater., 16, No. 4, 709–714 (2001).
C. Deidda, F. Delogu, F. Maglia, et al., Mater. Sci. Eng. A, 375, 800–803 (2004).
X. L. Cui and L. S. Cui, Key Eng. Mater., 280–283, Nos. 1/2, 581–586 (2005).
Z. G. Liu, J. T. Guo, L. L. Ye, et al., Appl. Phys. Lett., 65, No. 21, 2666–2668 (1994).
S. C. Tjong and Z. Y. Ma, Mater. Sci. Eng. R., 29, Nos. 3/4, 49–113 (2000).
K. P. Rao and J. B. Zhou, J. Mater. Sci., 39, Nos. 16/17, 5471–5476 (2004).
B. H. Lohse, A. Calka, and D. J. Wexler, Alloys Comp., 394, Nos. 1/2, 148–151 (2005).
N. Liu, C. L. Han, H. D. Yang, et al., Wear, 258, Nos. 11/12, 1688–1695 (2005).
S. Y. Bae, I. S. Ahn, T. K. Sung, et al., Mater. Sci. Forum, 510/511, 366–369 (2006).
V. V. Ivanovskaya, A. A. Sofronov, and A. L. Ivanovskii, Zh. Struktur. Khim., 42, No. 4, 818–821 (2001).
V. V. Ivanovskaya, Yu. N. Makurin, A. A. Sofronov, and A. L. Ivanovskii, Zh. Fiz. Khim., 77, No. 4, 616–621 (2003).
M. S. Dresselhaus, Y. M. Lin, O. Rabin, et al., Mater. Sci. Eng. C, 23, 129–140 (2003).
C. N. R. Rao, F. L. Deepak, G. Gundiah, and A. Govindaraj, Progr. Solid State Chem., 31, No. 1, 5–147 (2003).
M. Law, J. Goldberger, and P. Yang, Annu. Rev. Mater. Res., 34, 83–122 (2004).
C. N. R. Rao, A. Govindaraj, G. Gundiah, and S. R. C. Vivekchand, Chem. Eng. Sci., 59, 4665–4671 (2004).
H. Hernandez-Velez, Thin Solid Films, 495, No. 1, 51–63 (2006).
P. J. F. Harris, Carbon Nanotubes and Related Structures: New Materials for the Twenty-First Century, Cambridge Univ. Press, Cambridge (1999).
A. L. Ivanovskii, Quantum Chemistry in Materials Science. Nanotubular Forms of a Substance [in Russian], Izd. Ural. Otd. RAN, Ekaterinburg (1999).
A. N. Enyashin and A. L. Ivanovskii, Zh. Struktur. Khim., 47, No. 3, 568–570 (2006).
A. N. Enyashin and A. L. Ivanovskii, Physica E, 30, Nos. 1/2, 164–168 (2005).
A. N. Enyashin, V. G. Bamburov, and A. L. Ivanovskii, Dokl. RAN, Ser. Fiz. Khim., 407, No. 1, 53–58 (2006).
A. L. Ivanovskii, M. V. Ryzhkov, V. V. Ivanovskaya, et al., Dokl. RAN, Ser. Fiz. Khim., 378, No. 1, 68–73 (2001).
Author information
Authors and Affiliations
Additional information
__________
Translated from Teoreticheskaya i Éksperimental’naya Khimiya, Vol. 43, No. 1, pp. 1–23, January–February, 2007.
Rights and permissions
About this article
Cite this article
Ivanovskii, A.L. Titanium nanocarbides: Synthesis and modeling. Theor Exp Chem 43, 1–27 (2007). https://doi.org/10.1007/s11237-007-0001-7
Received:
Issue Date:
DOI: https://doi.org/10.1007/s11237-007-0001-7