Skip to main content
Log in

Abstract

The present state of research on the production and modeling of nanostructures based on titanium carbide-a typical representative of an extensive class of carbides of d-and f-metals-is reviewed. Methods for the synthesis of various Ti-C nanostructures (molecular clusters, nanocrystallites, nanospheres, nanofibers, nanowires) are examined, and their morphology, atomic structure, and known physicochemical characteristics are described. Theoretical models of the atomic structure and properties of new types of nanostructures in the titanium-carbon system (endo-and exohedral titanofullerenes, “hybrid” structures based on carbon nanotubes, the so-called peapods, nanocables, and a number of others) and the prospects for their application as components of nanoceramics, hydrogen accumulators, materials for spintronics, etc. are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Institutional subscriptions

References

  1. J. Goldschmidt, Interstitial Phases [Russian translation], Mir, Moscow (1971).

    Google Scholar 

  2. G. V. Samsonov, G. Sh. Upadkhaya, and V. S. Heshpor, Physical Materials Behavior of Carbides [in Russian], Metallurgiya, Moscow (1976).

    Google Scholar 

  3. L. Thom, Carbides and Nitrides of Transition Metals [Russian translation], Mir, Moscow (1974).

    Google Scholar 

  4. G. P. Shveikin, S. I. Alyamovskii, Yu. G. Zainulin, et al., Compounds with Variable Composition and Their Solid Solutions [in Russian], UNTs Akad. Nauk SSSR, Sverdlovsk (1984).

    Google Scholar 

  5. T. Ya. Kosolapova (ed.), Properties, Production, and Application of Refractory Compounds [in Russian], Naukova Dumka, Kiev (1986).

    Google Scholar 

  6. G. V. Samsonov and I. M. Vinnitskii, Refractory Compounds [in Russian], Metallurgiya, Moscow (1976).

    Google Scholar 

  7. A. I. Gusev, Nanocrystalline Materials: Methods of Production and Properties [in Russian], Izd. Ural. Otd. RAN (1998).

  8. A. I. Gusev and A. A. Rempel, Nanocrystalline Materials, Int. Sci. Publ., Cambridge (2004).

    Google Scholar 

  9. R. A. Andrievskii, Usp. Khim., 74, No. 12, 1163–1175 (2005).

    Google Scholar 

  10. A. I. Gusev, Nanomaterials, Nanostructures, Nanotechnologies [in Russian], Fizmatlit-Nauka, Moscow (2005).

    Google Scholar 

  11. A. I. Gusev, Usp. Khim., 71, No. 6, 507–532 (2002).

    Google Scholar 

  12. S. P. Dodd, M. Cankurtaran, and B. James, J. Mater. Sci., 38, 1107–1115 (2003).

    CAS  Google Scholar 

  13. A. L. Ivanovskii, V. P. Zhukov, and V. A. Gubanov, Electronic Structure of Refractory Carbides and Nitrides of Transition Metals, Nauka, Moscow (1990).

    Google Scholar 

  14. A. I. Gusev, Physical Chemistry of Nonstoichiometric Refractory Compounds [in Russian], Nauka, Moscow (1999).

    Google Scholar 

  15. V. N. Lipatnikov and A. I. Gusev, Ordering in Titanium and Vanadium Carbides, Ural. Otd. RAN, Ekaterinburg (2000).

    Google Scholar 

  16. A. I. Gusev and A. A. Rempel, Nonstoichiometry, Order, and Disorder in a Solid [in Russian], Ural. Otd. RAN, Ekaterinburg (2001).

    Google Scholar 

  17. V. M. Cherkashenko, S. Z. Nazarova, A. I. Gusev, and A. L. Ivanovskii, Zh. Struktur. Khim., 42, No. 6, 1196–1221 (2001).

    Google Scholar 

  18. B. C. Guo, R. P. Kerns, and A. W. Castleman, Science, 255, 1411–1413 (1992).

    ADS  CAS  Google Scholar 

  19. B. C. Guo, S. Wei, J. Purnell, et al., Science, 256, 515–516 (1992).

    ADS  CAS  Google Scholar 

  20. T. Pradeep and P. T. Manoharan, Current Sci., 68, No. 10, 1017–1026 (1995).

    CAS  Google Scholar 

  21. H. T. Deng, K. P. Kern, and A. W. Castleman, J. Am. Chem. Soc., 118, No. 2, 446–450 (1996).

    CAS  Google Scholar 

  22. S. F. Cartier, B. D. May, and A. W. Castleman, J. Phys. Chem., 100, No. 20, 8175–8179 (1996).

    CAS  Google Scholar 

  23. A. W. Castleman and K. H. Bowen, J. Phys. Chem., 100, No. 31, 12911–12944 (1996).

  24. R. King, Izv. Akad. Nauk, Ser. Khim., No. 5, 862–868 (1998).

  25. R. Selvan and T. Pradeep, Current Sci., 74, No. 8, 666–680 (1998).

    CAS  Google Scholar 

  26. M. M. Rohmer, M. Benard, and J. M. Poblet, Chem. Rev., 100, No. 2, 495–542 (2000).

    PubMed  CAS  Google Scholar 

  27. I. Dance, J. Am. Chem. Soc., 118, No. 11, 2699–2707 (1996).

    CAS  Google Scholar 

  28. S. Li, H. B. Wu, and L. S. Wang, J. Am. Chem. Soc., 119, No. 32, 7417–7422 (1997).

    CAS  Google Scholar 

  29. A. A. Sofronov, Yu. N. Makurin, M. V. Ryzhkov, and A. L. Ivanovskii, Koordinats. Khim., 25, No. 8, 597–603 (1999).

    Google Scholar 

  30. J. Munoz, M. M. Rohmer, M. Benard, et al., J. Phys. Chem., 103, No. 24, 4762–4768 (1999).

    CAS  Google Scholar 

  31. P. Liu, J. A. Rodriguez, H. Hou, J. T. Muckerman, J. Chem. Phys., 118, No. 17, 7737–7740 (2003).

    ADS  CAS  Google Scholar 

  32. P. Liu and J. A. Rodriguez, J. Chem. Phys., 120, No. 11, 5414–5421 (2004).

    PubMed  ADS  CAS  Google Scholar 

  33. P. Liu, J. M. Lightstone, M. J. Patterson, et al., J. Phys. Chem., 110, No. 14, 7449–7455 (2006).

    CAS  Google Scholar 

  34. L. S. Wang, S. Li, and H. Wu, J. Chem. Phys., 100, No. 50, 19211–19214 (1996).

  35. S. Li, H. Wu, and L. S. Wang, J. Am. Chem. Soc., 119, No. 32, 7417–7422 (1997).

    CAS  Google Scholar 

  36. A. N. Enyashin and A. L. Ivanovskii, Zh. Neorg. Khim., 50, No. 5, 743–746 (2005).

    Google Scholar 

  37. M. F. Ge, J. K. Feng, C. Yang, et al., Int. J. Quantum Chem., 71, No. 4, 313–318 (1999).

    CAS  Google Scholar 

  38. L. S. Wang, X. B. Wang, H. B. Wu, and H. S. Cheng, J. Am. Chem. Soc., 120, No. 26, 6556–6562 (1998).

    CAS  Google Scholar 

  39. J. O. Joswig, M. Springborg, and G. Seifert, Phys. Chem. Chem. Phys., 3, No. 23, 5130–5134 (2001).

    CAS  Google Scholar 

  40. H. J. Zhai, B. C. Liu, Z. W. Zhou, et al., Chinese Phys. Lett., 18, No. 12, 1582–1585 (2001).

    ADS  Google Scholar 

  41. S. F. Cartier, B. D. May, and A. W. Castleman, J. Chem. Phys., 100, No. 7, 5384–5386 (1994).

    ADS  CAS  Google Scholar 

  42. H. T. Deng, B. C. Guo, K. P. Kerns, and A. W. Castleman, Int. J. Mass Spectrom. Ion Proc., 138, 275–280 (1994).

    CAS  Google Scholar 

  43. H. T. Deng, B. C. Guo, K. P. Kerns, and A. W. Castleman, J. Phys. Chem., 98, No. 12, 13373–13380 (1994).

    Google Scholar 

  44. S. F. Cartier, B. D. May, and A. W. Castleman, J. Chem. Phys., 104, No. 10, 3423–3432 (1996).

    ADS  CAS  Google Scholar 

  45. B. D. May, S. E. Kooi, B. J. Toleno, and A. W. Castleman, J. Chem. Phys., 106, No. 6, 2231–2238 (1997).

    ADS  CAS  Google Scholar 

  46. S. E. Kooi and A. W. Castleman, J. Chem. Phys., 108, No. 21, 8864–8869 (1998).

    ADS  CAS  Google Scholar 

  47. H. Sakurai, S. E. Kooi, and A. W. Castleman, J. Clust. Sci., 10, 493–499 (1999).

    CAS  Google Scholar 

  48. V. V. Ivanovskaya, A. A. Sofronov, Yu. N. Makurin, and A. L. Ivanovskii, Koordinats. Khim., 27, No. 11, 808–818 (2001).

    Google Scholar 

  49. V. V. Ivanovskaya, A. A. Sofronov, Yu. N. Makurin, and A. L. Ivanovskii, Zh. Neorg. Khim., 47, No. 6, 972–980 (2002).

    Google Scholar 

  50. S. N. Khanna, Phys. Rev. B., 51, No. 16, 10965–10967 (1995).

    Google Scholar 

  51. A. L. Ivanovskii, Zh. Neorg. Khim., 48, No. 6, 1–15 (2003).

    Google Scholar 

  52. G. S. Zakharova, A. N. Enyashin, V. V. Ivanovskaya, et al., Inzhener. Fiz., No. 5, 19–41 (2003).

  53. A. L. Ivanovskii, Alternativ. Energet. Ekolog. (ISJAEE), No. 7(15), 28–40 (2004).

  54. A. L. Ivanovskii, Zh. Neorg. Khim., 50, No. 9, 1408–1422 (2005).

    Google Scholar 

  55. G. S. Zakharova, V. L. Volkov, V. V. Ivanovskaya, and A. L. Ivanovskii, Usp. Khim., 74, No. 7, 651–685 (2005).

    Google Scholar 

  56. G. S. Zakharova, V. L. Volkov, V. V. Ivanovskaya, and A. L. Ivanovskii, Nanotubes and Related Nanostructures of Metal Oxides [in Russian], Ural. Otd. RAN, Ekaterinburg (2005).

    Google Scholar 

  57. V. V. Ivanovskaya, Yu. N. Makurin, and A. L. Ivanovskii, Nanostructures Novel Architectures, Nova Sci. Publ., New York (2005), pp. 9–24.

    Google Scholar 

  58. V. V. Ivanovskaya, A. N. Enyashin, Yu. N. Makurin, and A. L. Ivanovskii, Nanotekhnika, No. 1(5), 126–140 (2006).

  59. A. A. Sofronov, V. V. Ivanovskaya, Yu. N. Makurin, Koordinats. Khim., 28, No. 9, 618–629 (2002).

    CAS  Google Scholar 

  60. V. V. Ivanovskaya, A. A. Sofronov, and A. L. Ivanovskii, Teor. Éksp. Khim., 37, No. 6, 331–335 (2001).

    Google Scholar 

  61. A. A. Sofronov, V. V. Ivanovskaya, Yu. N. Makurin, A. L. Ivanovskii, Chem. Phys. Lett., 351, Nos. 1/2, 35–41 (2002).

    CAS  Google Scholar 

  62. V. V. Ivanovskaya, A. A. Sofronov, and A. L. Ivanovskii, Phys. Lett. A, 297, 436–441 (2002).

    ADS  CAS  Google Scholar 

  63. V. V. Ivanovskaya, A. A. Sofronov, Yu. N. Makurin, and A. L. Ivanovskii, J. Mol. Struct. THEOCHEM, 594, Nos. 1/2, 31–39 (2002).

    CAS  Google Scholar 

  64. A. V. Eletskii and B. M. Smirnov, Usp. Fiz. Nauk, 165, No. 9, 977–1009 (1995).

    CAS  Google Scholar 

  65. T. Guo, M. D. Diener, T. Chai, et al., Science, 257, 1661–1664 (1992).

    ADS  CAS  Google Scholar 

  66. J. Kim, G. Galli, J. W. Wilkins, and A. J. Canning, J. Chem. Phys., 108, No. 6, 2631–2637 (1998).

    ADS  CAS  Google Scholar 

  67. A. N. Enyashin, V. V. Ivanovskaya, Yu. N. Makurin, and A. L. Ivanovskii, Fiz. Tverd. Tela, 46, No. 8, 1522–1525 (2004).

    Google Scholar 

  68. T. Guo, R. E. Smalley, and G. E. Scuseria, J. Chem. Phys., 99, No. 1, 352–359 (1993).

    ADS  CAS  Google Scholar 

  69. O. D. Haberlen, N. Rosch, and B. I. Dunlap, Chem. Phys. Lett., 200, No. 4, 418–423 (1992).

    ADS  Google Scholar 

  70. M. R. Pederson and N. Laouini, Phys. Rev. B, 48, No. 4, 2733–2737 (1993).

    ADS  CAS  Google Scholar 

  71. A. L. Ivanovskii, Yu. N. Makurin, and A. A. Sofronov, Koordinats. Khim., 25, No. 10, 763–768 (2000).

    Google Scholar 

  72. Yu. N. Makurin, A. A. Sofronov, A. I. Gusev, and A. L. Ivanovskii, Chem. Phys., 270, No. 2, 293–308 (2001).

    CAS  Google Scholar 

  73. B. Cao, M. Hasegawa, K. Okada, et al., J. Am. Chem. Soc., 123, No. 39, 9679–9680 (2001).

    PubMed  CAS  Google Scholar 

  74. B. Cao, K. Suenaga, T. Okazaki, and H. Shinohara, J. Phys. Chem. B, 106, No. 36, 9295–9298 (2002).

    CAS  Google Scholar 

  75. R. Jaffio, A. Debarre, C. Julian, et al., Phys. Rev. B, 68, No. 1, 014105 (1–8) (2003).

  76. H. Shinohara, Rep. Progr. Phys., 63, No. 6, 843–892 (2000).

    ADS  CAS  Google Scholar 

  77. K. Akiyama, K. Sueki, T. Kodama, et al., Chem. Phys. Lett., 317, Nos. 3–5, 490–496 (2000).

    CAS  Google Scholar 

  78. A. H. Enyashin, Yu. N. Makurin, and A. L. Ivanovskii, Comput. Mater. Sci., 36, 26–29 (2006).

    CAS  Google Scholar 

  79. A. Debarre, R. Jaffiol, C. Julien, et al., Chem. Phys. Lett., 380, Nos. 1/2, 6–11 (2003).

    CAS  Google Scholar 

  80. A. N. Enyashin and A. L. Ivanovskii, Zh. Neorg. Khim., 51, No. 9, 1483–1492 (2006).

    Google Scholar 

  81. K. S. Troche, V. R. Coluci, S. F. Braga, et al., NANO Lett., 5, No. 2, 349–355 (2005).

    PubMed  CAS  Google Scholar 

  82. A. Leonhardt, A. Ritschel, R. Kozhuharova, et al., Diamond Rel. Mater., 12, Nos. 3–7, 790–795 (2003).

    CAS  Google Scholar 

  83. Y. J. Kang, J. Choi, C. Y. Moon, and K. J. Chang, Phys. Rev. B, 71, No. 11, 115441 (1–9) (2005).

  84. Y. Ch. Su and W. K. Hsu, Appl. Phys. Lett., 87, No. 23, 233112 (1–3) (2005).

  85. Z. J. Liu, R. C. Che, Z. D. Xu, and L. M. Peng, Synth. Met., 128, No. 2, 191–195 (2002).

    CAS  Google Scholar 

  86. B. C. Satishkumar, A. Govindaraj, P. V. Vanitha, et al., Chem. Phys. Lett., 362, Nos. 3/4, 301–308 (2002).

    CAS  Google Scholar 

  87. M. M. Rahman, M. Kisaku, T. Kishi, et al., J. Phys.: Condens. Matter., 16, No. 48, S5755–S5759 (2004).

  88. M. Kisaku, M. Rahman, T. Kishi, et al., Jpn. J. Appl. Phys. A, 44, No. 2, 882–888 (2005).

    ADS  CAS  Google Scholar 

  89. S. Karmakar, S. M. Sharma, P. V. Teredesa, and A. K. Sood, Phys. Rev. B, 69, No. 16, 165414 (1–6) (2004).

  90. H. Terrones, F. López-Urías, E. Muñoz-Sandoval, et al., Solid State Sci., 8, Nos. 3/4, 303–320 (2006).

    CAS  Google Scholar 

  91. V. V. Ivanovskaya and A. L. Ivanovskii, Materialovedenie, No. 12, 10–13 (2006).

  92. V. V. Ivanovskaya, Ch. Köhler, and G. Seifert, Phys. Rev. B, 75, No. 7, 075410 (1–7) (2007).

  93. F. Tast, N. Malinowski, S. Frank, et al., Phys. Rev. Lett., 77, No. 17, 3529–3532 (1996).

    PubMed  ADS  CAS  Google Scholar 

  94. H. Hogberg, J. O. Malm, A. Talyzin, et al., J. Electrochem. Soc., 147, No. 9, 3361–3369 (2000).

    CAS  Google Scholar 

  95. Z. G. Liu, K. Tsuchiya, and M. Umemoto, J. Mater. Sci., 37, No. 6, 1229–1235 (2002).

    CAS  Google Scholar 

  96. J. B. Zang, J. Lu, Y. H. Wang, et al., Key Eng. Mater., 304/305, 48–51 (2006).

    Google Scholar 

  97. M. R. Pederson, D. V. Porezag, D. C. Patton, and E. Kaxiras, Chem. Phys. Lett., 303, Nos. 3/4, 373–378 (1999).

    CAS  Google Scholar 

  98. M. Nyberg, Y. Luo, L. Qian, et al., Phys. Rev. B, 63, No. 11, 115117 (1–6) (2001).

  99. T. Yildirim, J. Íñiguez, and S. Ciraci, Phys. Rev. B, 72, No. 15, 153403 (1–4) (2005).

  100. N. Akman, E. Durgun, T. Yildirim, et al., J. Phys.: Condens. Matter, 18, No. 41, 9509–9517 (2006).

    ADS  CAS  Google Scholar 

  101. T. Yildirim and S. Ciraci, Phys. Rev. Lett., 94, No. 17, 175501 (1–4) (2005).

  102. S. Dag, Y. Ozturk, S. Ciraci, et al., Phys. Rev. B, 72, No. 15, 155404 (1–8) (2005).

  103. S. Dag, S. Tongay, T. Yildirim, et al., Phys. Rev. B, 72, No. 15, 155444 (1–7) (2005).

  104. S. Dag and S. Ciraci, Phys. Rev. B, 71, No. 16, 165414 (1–8) (2005).

  105. S. B. Fagan, A. Fazzio, and R. Mota, Nanotechnology, 17, No. 4, 1154–1159 (2006).

    ADS  CAS  Google Scholar 

  106. I. R. Shein, V. L. Kozhevnikov, and A. L. Ivanovskii, Pis’ma Zh. Éksp. Teor. Fiz., 82, No. 4, 239–242 (2005).

    Google Scholar 

  107. I. R. Shein, B. L. Kozhevnikov, and A. L. Ivanovskii, Fiz. Tekhn. Poluprov., 40, No. 11, 1295–1299 (2006).

    Google Scholar 

  108. I. Zutic, J. Fabian, and S. Das Sarma, Rev. Mod. Phys., 76, 323–354 (2004).

    ADS  CAS  Google Scholar 

  109. T. Z. Meng, C. Y. Wang, and S. Y. Wang, J. Phys.: Condens. Matter, 18, No. 46, 10521–10528 (2006).

  110. J. Zhao, X. Ai, X. P. Huang, and Z. Lu, J. Adv. Mater. Manufact. Sci. Technol. Mater., 471/472, 167–171 (2004).

    Google Scholar 

  111. K. Konopka, A. Biedunkiewicz, A. Boczkowska, et al., From Nanopowders to Func. Mater. Solid State Phenom., 106, 141–144 (2005).

    CAS  Google Scholar 

  112. N. Guskos, A. Biedunkiewicz, J. Typec, et al., Rev. Adv. Mater. Sci., 8, No. 1, 49–52 (2004).

    CAS  Google Scholar 

  113. Q. Lu, J. Hu, K. Tang, et al., Chem. Phys. Lett., 314, Nos. 1/2, 37–39 (1999).

    CAS  Google Scholar 

  114. R. Alexandrescu, E. Borsella, S. Botti, et al., J. Mater. Sci., 32, 5629–5635 (1997).

    CAS  Google Scholar 

  115. Y. Leconte, H. Maskrot, N. Herlin-Boime, et al., Glass Phys. Chem., 31, No. 4, 510–518 (2005).

    CAS  Google Scholar 

  116. A. Agrawal, J. Cizeron, and V. L. Colvin, Microsc. Microanal., 4, No. 3, 269–277 (1998).

    PubMed  CAS  Google Scholar 

  117. L. Shi, Y. Gu, L. Chen, et al., Chem. Lett., 33, 56–57 (2004).

    Google Scholar 

  118. A. Fukunaga, S. Chu, and M. E. McHenry, J. Mater. Sci. Lett., 18, No. 6, 431–433 (1999).

    CAS  Google Scholar 

  119. X. Feng, Y. Bai, B. Lu, et al., J. Cryst. Growth, 264, 316–319 (2004).

    CAS  Google Scholar 

  120. C. H. Liang, G. W. Meng, W. Chen, et al., J. Cryst. Growth, 220, 296–300 (2000).

    CAS  Google Scholar 

  121. H. Dai, E. W. Wang, Z. Y. Lu, et al., Nature (London), 375, 769–772 (1995).

    ADS  CAS  Google Scholar 

  122. S. R. Qi, X. T. Huang, Z. W. Gan, et al., J. Cryst. Growth, 219, 485–488 (2000).

    CAS  Google Scholar 

  123. X. Wang, J. Lu, P. Gou, and Y. Xie, Chem. Lett., 31, 820–821 (2002).

    Google Scholar 

  124. R. Sergiienko, E. Shibata, H. Suwa, et al., Ultrasonics Sonochem., 13, 6–12 (2006).

    CAS  Google Scholar 

  125. A. Ikegami, Y. Kimura, H. Suzuki, et al., Surface Sci., 540, Nos. 2/3, 395–400 (2003).

    ADS  CAS  Google Scholar 

  126. Y. H. Chang, C. W. Chin, Y. C. Chen, et al., J. Mater. Chem., 12, No. 8, 2189–2191 (2002).

    CAS  Google Scholar 

  127. D. W. Lee, S. Alexandrovskii, and B. K. Kim, Mater. Chem. Phys., 88, 23–26 (2004).

    CAS  Google Scholar 

  128. Y. Bai, X. Feng, B. Lu, et al., Chem. Phys. Lett., 388, No. 1, 58–61 (2004).

    CAS  Google Scholar 

  129. K. Tang, G. Shen, D. Chen, et al., Chem. Lett., 32, 116–117 (2003).

    CAS  Google Scholar 

  130. L. Tong and R. G. Reddy, Scripta Mater., 52, 1253–1258 (2005).

    CAS  Google Scholar 

  131. D. W. Lee and B. K. Kim, Scripta Mater., 48, No. 11, 1513–1518 (2003).

    CAS  Google Scholar 

  132. Y. Shin, X. S. Li, C. Wand, et al., Adv. Mater., 16, No. 14, 1212–1215 (2004).

    CAS  Google Scholar 

  133. Y. Gu, L. Chen, Z. Li, et al., Carbon, 42, No. 1, 235–238 (2004).

    CAS  Google Scholar 

  134. M. S. El-Eskandarany, M. Omori, T. Kamiyama, et al., Sci. Rep. Res. Inst. Tohoku Univ. Ser. A, 43, No. 2, 181–193 (1997).

    CAS  Google Scholar 

  135. T. Weissgarber and B. F. Kieback, Mater. Sci. Forum, 343, No. 3, 275–283 (2000).

    Google Scholar 

  136. J. L. Li, G. Y. Cao, Y. Zhou, et al., J. Inorg. Mater., 16, No. 4, 709–714 (2001).

    ADS  CAS  Google Scholar 

  137. C. Deidda, F. Delogu, F. Maglia, et al., Mater. Sci. Eng. A, 375, 800–803 (2004).

    Google Scholar 

  138. X. L. Cui and L. S. Cui, Key Eng. Mater., 280–283, Nos. 1/2, 581–586 (2005).

    Google Scholar 

  139. Z. G. Liu, J. T. Guo, L. L. Ye, et al., Appl. Phys. Lett., 65, No. 21, 2666–2668 (1994).

    ADS  CAS  Google Scholar 

  140. S. C. Tjong and Z. Y. Ma, Mater. Sci. Eng. R., 29, Nos. 3/4, 49–113 (2000).

    Google Scholar 

  141. K. P. Rao and J. B. Zhou, J. Mater. Sci., 39, Nos. 16/17, 5471–5476 (2004).

    CAS  Google Scholar 

  142. B. H. Lohse, A. Calka, and D. J. Wexler, Alloys Comp., 394, Nos. 1/2, 148–151 (2005).

    CAS  Google Scholar 

  143. N. Liu, C. L. Han, H. D. Yang, et al., Wear, 258, Nos. 11/12, 1688–1695 (2005).

    CAS  Google Scholar 

  144. S. Y. Bae, I. S. Ahn, T. K. Sung, et al., Mater. Sci. Forum, 510/511, 366–369 (2006).

    Google Scholar 

  145. V. V. Ivanovskaya, A. A. Sofronov, and A. L. Ivanovskii, Zh. Struktur. Khim., 42, No. 4, 818–821 (2001).

    Google Scholar 

  146. V. V. Ivanovskaya, Yu. N. Makurin, A. A. Sofronov, and A. L. Ivanovskii, Zh. Fiz. Khim., 77, No. 4, 616–621 (2003).

    Google Scholar 

  147. M. S. Dresselhaus, Y. M. Lin, O. Rabin, et al., Mater. Sci. Eng. C, 23, 129–140 (2003).

    Google Scholar 

  148. C. N. R. Rao, F. L. Deepak, G. Gundiah, and A. Govindaraj, Progr. Solid State Chem., 31, No. 1, 5–147 (2003).

    CAS  Google Scholar 

  149. M. Law, J. Goldberger, and P. Yang, Annu. Rev. Mater. Res., 34, 83–122 (2004).

    CAS  Google Scholar 

  150. C. N. R. Rao, A. Govindaraj, G. Gundiah, and S. R. C. Vivekchand, Chem. Eng. Sci., 59, 4665–4671 (2004).

    CAS  Google Scholar 

  151. H. Hernandez-Velez, Thin Solid Films, 495, No. 1, 51–63 (2006).

    CAS  Google Scholar 

  152. P. J. F. Harris, Carbon Nanotubes and Related Structures: New Materials for the Twenty-First Century, Cambridge Univ. Press, Cambridge (1999).

    Google Scholar 

  153. A. L. Ivanovskii, Quantum Chemistry in Materials Science. Nanotubular Forms of a Substance [in Russian], Izd. Ural. Otd. RAN, Ekaterinburg (1999).

    Google Scholar 

  154. A. N. Enyashin and A. L. Ivanovskii, Zh. Struktur. Khim., 47, No. 3, 568–570 (2006).

    Google Scholar 

  155. A. N. Enyashin and A. L. Ivanovskii, Physica E, 30, Nos. 1/2, 164–168 (2005).

    ADS  CAS  Google Scholar 

  156. A. N. Enyashin, V. G. Bamburov, and A. L. Ivanovskii, Dokl. RAN, Ser. Fiz. Khim., 407, No. 1, 53–58 (2006).

    Google Scholar 

  157. A. L. Ivanovskii, M. V. Ryzhkov, V. V. Ivanovskaya, et al., Dokl. RAN, Ser. Fiz. Khim., 378, No. 1, 68–73 (2001).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Teoreticheskaya i Éksperimental’naya Khimiya, Vol. 43, No. 1, pp. 1–23, January–February, 2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ivanovskii, A.L. Titanium nanocarbides: Synthesis and modeling. Theor Exp Chem 43, 1–27 (2007). https://doi.org/10.1007/s11237-007-0001-7

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11237-007-0001-7

Key words

Navigation