Theoretical and Experimental Chemistry

, Volume 41, Issue 1, pp 1–6 | Cite as

Quantum-chemical interpretation of the reorientation of dialkyl-cis-9,10-dihydroanthracene-9,10-endofumarates on a silver-containing stationary phase

  • V. N. Rodionov
  • B. V. Chernyaev
  • I. A. Levandovskii
  • T. E. Shubina
  • A. A. Fokin
Article

Abstract

The chromatographic behavior of a series of dialkyl-cis-9,10-dihydroanthracene-9,10-endofumarates on a silver-containing stationary phase with various mobile phase compositions and at various temperatures was investigated by liquid chromatography. The observed relationships indicate reorientation of the analytes on the surface of the adsorbent with increase in temperature. This is explained by the formation of two types of chelate complexes similar in energy between the analytes and the silver ions. It agrees well with data calculated by the B3LYP/LANL2DZ method.

Key words

adsorption liquid chromatography silver-containing stationary phase complexation reorientation analytes quantum-chemical calculations 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    Gmelin, Handbuch der Anorganischen Chemie, R. Keim (ed.), Vol. 61, B5, Springer, Berlin (1975), pp. 26–119.Google Scholar
  2. 2.
    M. J. C. Dewar, Bull. Soc. Chim. France, 18, C79 (1951).Google Scholar
  3. 3.
    J. Chatt and L. A. Duncanson, J. Chem. Soc., 2929 (1953).Google Scholar
  4. 4.
    G. Freenking and N. Froehlich, Chem. Rev., 100, 717 (2000).CrossRefPubMedGoogle Scholar
  5. 5.
    Y.-P. Ho, Y.-C. Yang, S. J. Klippenstein, and R. C. Dunbar, J. Phys. Chem. A, 101, 3338 (1997).CrossRefGoogle Scholar
  6. 6.
    N. Osaka, M. Akita, S. Fujii, and K. Itoh, J. Phys. Chem., 100, 17606 (1996).CrossRefGoogle Scholar
  7. 7.
    H. J. Huang, J. Padin, and R. T. Yang, J. Phys. Chem. B, 103, 3206 (1999).CrossRefGoogle Scholar
  8. 8.
    R. H. Hertwig, W. Koch, D. Schroeder, et al., J. Phys. Chem., 100 12253 (1996).CrossRefGoogle Scholar
  9. 9.
    F. S. Mathews and W. N. Lipsomb, J. Am. Chem. Soc., 80, 4745 (1958).CrossRefGoogle Scholar
  10. 10.
    P. A. Krasutskii, A. G. Yurchenko, V. N. Rodionov, et al., Teor. Éksp. Khim., 19, No.6, 685–693 (1983).Google Scholar
  11. 11.
    B. Franzus, W. C. Baird, E. I. Snyder, and J. N. Surridge, J. Org. Chem., 32, No.9, 2845 (1967).CrossRefGoogle Scholar
  12. 12.
    P. A. Krasutskii, A. G. Yurchenko, V. N. Rodionov, and N. I. Kulik, Teor. Éksp. Khim., 20, No.1, 54–58 (1984).Google Scholar
  13. 13.
    B. Damyanova, S. Momtchilova, S. Bakalova, et al., J. Mol. Struct. (Theochem), 589/590, 239 (2002).CrossRefGoogle Scholar
  14. 14.
    V. N. Rodionov, B. V. Chernyaev, N. S. Verpovskii, et al., Zh. Anal. Khim., 47, No.9, 1648 (1992).Google Scholar
  15. 15.
    W. E. Bachmann and L. B. Scott, J. Am. Chem. Soc., 70, 1458 (1948).CrossRefGoogle Scholar
  16. 16.
    M. J. Frisch, G. W. Trucks, H. B. Schlegel, et al., Gaussian98, Revision A.7, Pittsburgh PA., USA (1998).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • V. N. Rodionov
    • 1
  • B. V. Chernyaev
    • 1
  • I. A. Levandovskii
    • 1
  • T. E. Shubina
    • 1
  • A. A. Fokin
    • 1
  1. 1.National Technical University of Ukraine “Kyiv Polytechnical Institute,”KyivUkraine

Personalised recommendations