Skip to main content
Log in

Finite field construction for quasi-cyclic LDPC convolutional codes with cyclic 2-D MDS codes

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

The parity-check matrices for quasi-cyclic low-density parity-check convolutional (QC-LDPC-C) codes have different characteristics of time-varying periodicity and need to realize fast encoding. The finite field construction method for QC-LDPC-C codes with cyclic two-dimensional maximum distance separable (2-D MDS) codes is proposed using the base matrix framework and matrix unwrapping, thus the constructed parity-check matrices are free of length-4 cycles. The unwrapped matrices are constructed respectively based on different cyclic 2-D MDS codes for the case of matrix period less than or greater than constraint block length, and construction examples are given. LDPC-C codes with different periodicity characteristics are compared with QC-LDPC-C codes constructed with the proposed method. Experimental results show that QC-LDPC-C codes with the proposed method outperform the other codes and have lower encoding and decoding complexity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Felstrom, A. J., & Zigangirov, K. S. (1999). Time-varying periodic convolutional codes with low-density parity-check matrix. IEEE Transactions on Information Theory, 45(6), 2181–2191.

    Article  Google Scholar 

  2. Pusane, A. E., Felstrom, A. J., Sridharan, A., Lentmaier, M., Zigangirov, K. S., & Costello, D. J., Jr. (2008). Implementation aspects of LDPC convolutional codes. IEEE Transactions on Communications, 56(7), 1060–1069.

    Article  Google Scholar 

  3. IEEE Draft Standard for Broadband over Power Line Networks: Medium Access Control and Physical Layer Specifications. (2020). IEEE Std. 1901. IEEE Press: New York.

  4. Tanner, R. M., Sridhara, D., Sridharan, A., Fuja, T. E., & Costello, D. J., Jr. (2004). LDPC block and convolutional codes based on circulant matrices. IEEE Transactions on Information Theory, 50(12), 2966–2984.

    Article  Google Scholar 

  5. Pusane, A. E., Smarandache, R., Vontobel, P. O., & Costello, D. J., Jr. (2011). Deriving good LDPC convolutional codes from LDPC block codes. IEEE Transactions on Information Theory, 57(2), 835–857.

    Article  Google Scholar 

  6. Mu, L., Liu, X., & Liang, C. (2012). Construction of binary LDPC convolutional codes based on finite fields. IEEE Communications Letters, 16(6), 897–900.

    Article  Google Scholar 

  7. Bocharova, E., Kudryashov, B. D., & Johannesson, R. (2016). Searching for binary and nonbinary block and convolutional LDPC codes. IEEE Transactions on Information Theory, 62(1), 163–183.

    Article  Google Scholar 

  8. Usatyuk, V. and Vorobyev, I. (2019). Construction of high performance block and convolutional multi-edge type QC-LDPC codes. In 2019 42nd international conference on telecommunications and signal processing (TSP). (pp 158–163) Budapest, Hungary.

  9. Tadayon, M. H., Tasdighi, A., Battaglioni, M., Baldi, M., & Chiaraluce, F. (2018). Efficient search of compact QC-LDPC and SC-LDPC convolutional codes with large girth. IEEE Communications Letters, 22(6), 1156–1159.

    Article  Google Scholar 

  10. Battaglioni, M., Baldi, M., Chiaraluce, F., & Lentmaier, M. (2019). Girth properties of time-varying SC-LDPC convolutional codes. In: 2019 IEEE International Symposium on Information Theory (ISIT) (pp. 2599–2603). Paris, France.

  11. Wang, H., Ranganathan, S. V. S., & Wesel, R. D. (2019). Variable-length coding with shared incremental redundancy: Design methods and examples. IEEE Transactions on Communications, 67(9), 5981–5995.

    Article  Google Scholar 

  12. Pearl, J. (1988). Probabilistic reasoning in intelligent systems. Morgan Kaufman.

    Google Scholar 

  13. MacWilliams, F. J., & Sloane, N. J. A. (1977). The theory of error-correcting codes. North Holland.

    Google Scholar 

  14. Xu, J., Chen, L., Djurdjevic, I., Lin, S., & Abdel-Ghaffar, K. (2007). Construction of regular and irregular LDPC codes: geometry decomposition and masking. IEEE Transactions on Information Theory, 53(1), 121–134.

    Article  Google Scholar 

  15. Cam, H., Ucan, O. N., Odabasioglu, N., & Sonmez, A. C. (2010). Performance of joint multilevel/AES-LDPCC-CPFSK schemes over wireless sensor networks. International Journal of Communication Systems, 23(1), 77–90.

    Google Scholar 

  16. Kamalakannan, S., & Kalpana, P. (2020). Medical data transmission using the product of TLDPC and BCH error control coding systems with two interleavers. International Journal of Communication Systems, 33(12), e4439.

    Article  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China under Grant number 61771047 and the application of China national terrestrial digital TV system research (The Next Generation) project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Zhao.

Ethics declarations

Competing interest

On behalf of all authors, the corresponding author states that there is no competing interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, M., Liu, Z. & Zhao, L. Finite field construction for quasi-cyclic LDPC convolutional codes with cyclic 2-D MDS codes. Telecommun Syst 81, 115–123 (2022). https://doi.org/10.1007/s11235-022-00926-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-022-00926-x

Keywords

Navigation