Skip to main content
Log in

Traffic splitting for delay jitter control in multi-access systems

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

This work addresses the problem of traffic splitting for improving the overall delay jitter performance in the uplink multi-access system. We propose a packet-scheduling paradigm based on stochastic approximation algorithm to distribute the source traffic across the multiple network paths/interfaces. We first provide an analytical model and the delay jitter analysis for an individual interface. Later we formulate the traffic splitting problem as an optimization problem to learn the optimal split across the interfaces. We share the experimental results for the video and constant bit rate traffic on real networks (Wi-Fi or cellular networks) and convergence of our system using the proposed scheme in the dynamic network environment. The paradigm proposed in the paper is general and can be adapted to different objective functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Sandvine Global Internet Phenomena Report. (2013). White Paper. Sandvine.

  2. Index, C. V .N. (2015). Cisco visual networking index: Global mobile data traffic forecast update, 2014–2019. Technical report.

  3. Ericsson Mobility Report. Technical report (2016).

  4. Rehman, I. U., Nasralla, M. M., Ali, A., & Philip, N. (2018). Small cell-based ambulance scenario for medical video streaming: A 5G-health use case. In International conference on smart cities: Improving quality of life using ICT IoT (HONET-ICT) (pp. 29–32).

  5. Sahu, M., & Kherani, A. A. (2022). The vision of ‘Smart ambulances’ goes hand-in-hand with a data-empowered paramedic. The Journal of mHealth.

  6. Sahu, M., Damle, S., & Kherani, A.A. (2019). Traffic splitting for end-to-end delay jitter control in uplink multi-access systems. In International conference on COMmunication Systems NETworkS (COMSNETS).

  7. Sahu, M., Rachuri, S. P., Ansari, A. A., Tandur, D., & Kherani, A. A. (2020). On limiting delay and Jitter characteristics at application-layer of multi-connected Systems. In IEEE 5G world forum (5GWF) (pp. 36–41).

  8. Schmidt, P. S., Merz, R., & Feldmann, A. (2012). A first look at multi-access connectivity for mobile networking. In ACM workshop on capacity sharing (pp. 9–14).

  9. TCP Extensions for Multipath operation with Multiple Addresses. RFC 6824 (2013).

  10. Iyengar, J. R., Shah, K. C., Amer, P. D., & Stewart, R. (2006). Concurrent multipath transfer using SCTP multihoming over independent end-to-end paths. IEEE/ACM Transactions on Networking, 951–964.

  11. Singh, V., Ahsan, S., & Ott, J. (2013). MPRTP: Multipath considerations for real-time media. In Multimedia systems conference (MMSys ’13, pp. 190–201).

  12. RTP: A transport protocol for real-time applications. RFC 3550 (2013).

  13. Mao, S., Bushmitch, D., Narayanan, S., & Panwar, S. S. (2006). MRTP: A multi-flow real-time transport protocol for ad HOC networks. IEEE Transactions on Multimedia, 8(2), 356–369.

    Article  Google Scholar 

  14. Pakulova, E., Miller, K., & Wolisz, A. (2017). Adaptive low-delay video streaming in heterogeneous wireless networks using MPRTP. In International wireless communications and mobile computing conference (IWCMC) (pp. 14–19).

  15. Streamcom. https://northcom.dk/streamcom-til-region-nordjylland/

  16. Deng, Z., Liu, Y., Liu, J., & Argyriou, A. (2021). Cross-layer DASH-based multipath video streaming over LTE and 802.11ac networks. Multimedia Tools and Applications, 80, 16007–16026.

    Article  Google Scholar 

  17. Elgabli, A., & Aggarwal, V. (2019). SmartStreamer: Preference-aware multipath video streaming over MPTCP. IEEE Transactions on Vehicular Technology, 68(7), 6975–6984.

    Article  Google Scholar 

  18. Elgabli, A., Liu, K., & Aggarwal, V. (2020). Optimized preference-aware multi-path video streaming with scalable video coding. IEEE Transactions on Mobile Computing, 19(1), 159–172.

    Article  Google Scholar 

  19. Afzal, S., Rothenberg, C. E., Testoni, V., Kolan, P., & Bouazizi, I. (2021). Multi-path MMT-based approach for streaming high quality video over multiple wireless access networks. Computer Networks, 185, 107638.

    Article  Google Scholar 

  20. Taha, M., Canovas, A., Lloret, J., & Ali, A. (2021). A QoE adaptive management system for high definition video streaming over wireless networks. Telecommunication Systems, 77, 63–81.

    Article  Google Scholar 

  21. Chiariotti, F., Kucera, S., Zanella, A., & Claussen, H. (2019). Analysis and design of a latency control protocol for multi-path data delivery with pre-defined QoS guarantees. IEEE/ACM Transactions on Networking, 27(3), 1165–1178.

    Article  Google Scholar 

  22. Chen, Y., Towsley, D., & Khalili, R. (2016). MSPlayer: Multi-source and multi-path video streaming. IEEE Journal on Selected Areas in Communications, 34(8), 2198–2206.

    Article  Google Scholar 

  23. Houzé, P., Mory, E., Texier, G., & Simon, G. (2016). Applicative-layer multipath for low-latency adaptive live streaming. In IEEE international conference on communications (ICC) (pp. 1–7).

  24. Wu, J., Yuen, C., Wang, M., & Chen, J. L. (2015). Content-aware concurrent multipath transfer for high-definition video streaming over heterogeneous wireless networks. IEEE Transactions on Parallel and Distributed Systems, 27, 1–1.

    Google Scholar 

  25. Yang, W., Dong, P., Cai, L., & Tang, W. (2021). Loss-aware throughput estimation scheduler for multi-path TCP in heterogeneous wireless networks. IEEE Transactions on Wireless Communications, 20(5), 3336–3349.

    Article  Google Scholar 

  26. Wu, H., Alay, O., Brunstrom, A., Ferlin, S., & Caso, G. (2020). Peekaboo: Learning-based multipath scheduling for dynamic heterogeneous environments. IEEE Journal on Selected Areas in Communications, 38(10), 2295–2310.

    Article  Google Scholar 

  27. Zhang, H., Li, W., Gao, S., Wang, X., & Ye, B. (2019). ReLeS: A neural adaptive multipath scheduler based on deep reinforcement learning. In IEEE INFOCOM-IEEE conference on computer communications (pp. 1648–1656).

  28. Abbas, N., Hajj, H., Dawy, Z., Jahed, K., & Sharafeddine, S. (2017). An optimized approach to video traffic splitting in heterogeneous wireless networks with energy and QoE considerations. Journal of Network and Computer Applications, 83, 72–88.

    Article  Google Scholar 

  29. Zhang, X., & Yang, F. (2017). Joint bandwidth and power allocation for energy efficiency optimization over heterogeneous LTE/WiFi multi-homing networks. In IEEE wireless communications and networking conference (WCNC) (pp. 1–6).

  30. Harutyunyan, D., Herle, S., Maradin, D., Agapiu, G., & Riggio, R. (2018). Traffic-aware user association in heterogeneous LTE/WiFi radio access networks. In NOMS 2018- IEEE/IFIP network operations and management symposium (pp. 1–8).

  31. Yang, R., Chang, Y., Sun, J., & Yang, D. (2012). Traffic split scheme based on common radio resource management in an integrated LTE and HSDPA networks. In IEEE vehicular technology conference (VTC Fall) (pp. 1–5).

  32. Wu, J., Yang, J., & Chen, J. (2013). Loss tolerant bandwidth aggregation for multihomed video streaming over heterogeneous wireless networks. In IEEE global communications conference (GLOBECOM) (pp. 2956–2962).

  33. Capela, N., & Sargento, S. (2012). Optimizing network performance with multi-homing and network coding. In IEEE Globecom workshops (pp. 210–215).

  34. Zhang, F. P., Yang, O. W. W., & Cheng, B. K. M. (2001). Performance evaluation of jitter management algorithms. In Canadian conference on electrical and computer engineering 2001. Conference proceedings (Cat. No.01TH8555) (Vol. 2, pp. 1011–10162).

  35. Le, H., Nguyen, H., Pham Ngoc, N., Pham, A., & Cong Thang, T. (2015). A novel adaptation method for HTTP streaming of VBR videos over mobile networks. Mobile Information Systems.

  36. Okuyama, T., Yasukawa, K., & Yamaoka, K. (2008). Nearly equal delay path set configuration (NEED-PC) for multipath delay jitter reduction. IEICE Transactions on Communications, 91B(3), 722–732.

    Article  Google Scholar 

  37. Xu, C., Wang, P., Xiong, C., Wei, X., & Muntean, G. (2017). Pipeline network coding-based multipath data transfer in heterogeneous wireless networks. IEEE Transactions on Broadcasting, 63(2), 376–390.

    Article  Google Scholar 

  38. Chan, M., Tseng, C., & Yen, L. (2016). Jitter-aware packet scheduler for concurrent multi-path transmission in heterogeneous wireless networks. In IEEE wireless communications and networking conference (pp. 1–7).

  39. Kuhn, N., Lochin, E., Mifdaoui, A., Sarwar, G., Mehani, O., & Boreli, R. (2014). DAPS: Intelligent delay-aware packet scheduling for multi-path transport. In IEEE international conference on communications (ICC) (pp. 1222–1227).

  40. Devetak, F., Shin, J., Anjali, T., & Kapoor, S. (2011). Minimizing path delay in multi-path networks. In 2011 IEEE international conference on communications (ICC) (pp. 1–5).

  41. Shin, J., Devetak, F., Anjali, T., & Kapoor, S. (2013). Concurrent multi-path routing over bounded paths: Minimizing delay variance. In IEEE global communications conference (GLOBECOM) (pp. 1483–1488).

  42. Leng, Q., Wei, Y.-H., Han, S., Mok, A., Zhang, W., & Tomizuka, M. (2015). Improving control performance by minimizing jitter in RT-WiFi networks. In Proceedings-real-time systems symposium (pp. 63–73).

  43. Hammad, K., Moubayed, A., Shami, A., & Primak, S. (2016). Analytical approximation of packet delay jitter in simple queues. IEEE Wireless Communications Letters, 5, 1–1.

    Article  Google Scholar 

  44. Doggen, J., & Van der Schueren, F. (2008). Design and simulation of a H.264 AVC video streaming model.

  45. Sahu, M., Damle, S., & Kherani, A. (2021). End-to-end uplink delay jitter in LTE systems. Wireless Networks.

  46. Sahu, M., & Kherani, A. A. (2020). End-to-end delay jitter in LTE uplink: Simple models, empirical validation applications. In International conference on COMmunication Systems NETworkS (COMSNETS) (pp. 221–228).

  47. Xing, M., Xiang, S., & Cai, L. (2014). A real-time adaptive algorithm for video streaming over multiple wireless access networks. IEEE Journal on Selected Areas in Communications, 32, 795–805.

    Article  Google Scholar 

  48. Combes, R., Sidi, H. B. A., & Elayoubi, S.-E. (2017). Multi-path streaming: Fundamental limits and efficient algorithms. IEEE Journal on Selected Areas in Communications, 35(1), 188–199.

    Google Scholar 

  49. Abraham, R., Marsden, J. E., & Ratiu, T. (1983). Manifolds, tensors, analysis, and applications (2nd ed.). Springer.

  50. Damle, S., Sahu, M., & Kherani, A. A. (2019). An uplink multi-access system for high definition video transmission. In International conference on COMmunication Systems NETworkS (COMSNETS) (pp. 532–5340.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Megha Sahu.

Ethics declarations

Conflicts of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahu, M., Rachuri, S.P., Ansari, A.A. et al. Traffic splitting for delay jitter control in multi-access systems. Telecommun Syst 80, 513–527 (2022). https://doi.org/10.1007/s11235-022-00921-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-022-00921-2

Keywords

Navigation