Skip to main content
Log in

Experimental validation of carrier waveform inter-displacement modulation with software defined electronics platform

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

In this work, a Carrier Waveform Inter-Displacement (CWID) modulation, based on Linear Frequency Modulation-Phase Shift Keying (LFM-PSK), is proposed to achieve high Bit Transmission Rate (BTR) in wireless radio communications system. The novel modulation scheme introduces position modulation by re-ordering inter-displacement in different symbol carriers, which improves the BTR as compared with the LFM-PSK system. Moreover, a Graphical User Interface (GUI) based on Wireless open-Access Research Platform (WARP) is designed and the CWID system is implemented and validated on the Software Defined Electronics platform. Results of simulations and experiments show the effectiveness and the superiority of the CWID over its competitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Bai, C., Ren, H. P., Celso, G., & Baptista, M. S. (2018). Chaos-based underwater communication with arbitrary transducers and bandwidth. Applied Sciences, 8(2), 162. https://doi.org/10.3390/app8020162

    Article  Google Scholar 

  2. Zhang, Z. P., Mike, W., Nowak, M. J., Lomonte, L., & Wu, Z. Q. (2017). Mixed-modulated linear frequency modulated radar-communications. IET Radar Sonar and Navigation, 11(2), 313–320. https://doi.org/10.1049/iet-rsn.2016.0249

    Article  Google Scholar 

  3. Nartasilap, N., Salim, A., Tuninetti, D., & Devroye, N. (2018). Communications system performance and design in the presence of radar interference. IEEE Transactions on Communications, 66(9), 4170–4185. https://doi.org/10.1109/TCOMM.2018.2823764

    Article  Google Scholar 

  4. Chen, L., Ai, H. Z., Zhuang, Z. J., & Shang, C.(2018). Real-time multiple people tracking with deeply learned candidate selection and person re-identification. In IEEE international conference on multimedia and expo(ICME18). San Diego: IEEE. https://doi.org/10.1109/ICME.2018.8486597

  5. Wang, S. S., Liu, Z., Xie, R., & Wang, J. J. (2021). VCR-LFM-BPSK signal design for countering advanced interception technologies. Journal of Systems Engineering and Electronics, 32(2), 380–388. https://doi.org/10.23919/JSEE.2021.000031

    Article  Google Scholar 

  6. Bekar, M., Baker, C. J., Hoare, E. G., & Gashinova, M. (2020). Joint MIMO radar and communication system using a PSK-LFM waveform with TDM and CDM approaches. IEEE Sensors Journal, 21(5), 6115–6124. https://doi.org/10.1109/JSEN.2020.3043085

    Article  Google Scholar 

  7. Bekar, M., Baker, C. J., Hoare, E. G., & Gashinova, M. (2020). Realization of a joint MIMO radar and communication system using a PSK-LFM waveform. In IEEE radar conference (RadarConf20). Florence: IEEE. https://doi.org/10.1109/RadarConf2043947.2020.9266699

  8. Li, J., & Dai, Y. Z. (2020). Fast parameter estimation of LFM-BPSK composite modulation and symbol recovery. Radar & ECM, 40(2), 14–19. https://doi.org/10.19341/j.cnki.issn.1009-0401.2020.02.004

    Article  Google Scholar 

  9. Song, J., Liu, Y., & Xue, Y. Y. (2013). Parameter estimation and recognition of hybrid modulated signal combining BPSK with LFM. Journal of Nanjing University of Aeronautics & Astronautics, 45(2), 217–224. https://doi.org/10.3969/j.issn.1005-2615.2013.02.010

    Article  Google Scholar 

  10. Liu, Z. P., Zhang, W. K., & Xu, S. F. (2013). Implementation on the integrated waveform of radar and communication. In International conference on communications, circuits and systems (ICCCAS13) (pp.200-204). Chengdu: IEEE. https://doi.org/10.1109/ICCCAS.2013.6765318

  11. Yang, H. T., Zhou, Y., Gu, Y. B., & Zhang, L. R. (2019). Design of integrated radar and communication signal based on multicarrier parameter modulation signal. Journal of Radars, 8(1), 54–63. https://doi.org/10.12000/JR18001

    Article  Google Scholar 

  12. Chen, X. B., Wang, X. M., Xu, S. F., & Zhang, J. (2011). A novel radar waveform compatible with communication. In International conference on computational problem-solving(ICCP11), (pp. 177-181).Chengdu: IEEE. https://doi.org/10.1109/ICCPS.2011.6092272

  13. Zhang, W. K., & Liu, Z. P.(2013). Design and implementation of modulator of a novel radar waveform compatible with communication. In International workshop on microwave and millimeter wave circuits and system technology (MMWCST13)(pp. 357-360). Chengdu: IEEE. https://doi.org/10.1109/MMWCST.2013.6814653

  14. Li, B. S., Zhou, S. L., Stojanovic, M., Freitag, L., & Willett, P. (2008). Multicarrier communication over underwater acoustic channels with nonuniform Doppler shifts. IEEE Journal of Oceanic Engineering, 33(2), 198–209. https://doi.org/10.1109/JOE.2008.920471

    Article  Google Scholar 

  15. Ren, H. P., Guo, S. L., Bai, C., & Zhao, X. H. (2021). Cross correction and chaotic shape-forming filter based quadrature multi-carrier differential chaos shift keying communication. IEEE Transactions on Vehicular Technology, 70(12), 12675–12690. https://doi.org/10.1109/TVT.2021.3119176

    Article  Google Scholar 

  16. Scheiblhofer, W., Feger, R., Haderer, A., Scheiblhofer, S., & Stelzer, A. (2016). In-chip FSK communication between cooperative 77-GHz radar stations integrating variable power distribution between ranging and communication system. International Journal of Microwave & Wireless Technologies, 8(4/5), 825–832. https://doi.org/10.1017/S1759078716000088

    Article  Google Scholar 

  17. Nowak, M., Wicks, M., Zhang, Z. P., & Wu, Z. Q. (2016). Co-designed radar-communication using linear frequency modulation waveform. IEEE Aerospace and Electronic Systems Magazine, 31(10), 28–35. https://doi.org/10.1109/MAES.2016.150236

    Article  Google Scholar 

  18. Sun, F. L., Jiang, Z. T., Shen, J., & Zhu, J. Y. (2019). Parameters estimation of LFM-BPSK hybrid signal in low SNR. Guidance & Fuze, 40(2), 28–35. https://doi.org/10.3969/j.issn.1671-0576.2019.02.006

    Article  Google Scholar 

  19. Bai, C., Zhao, X. H., Ren, H. P., Kolumban, G., & Grebogi C. (2021). Double-stream differential chaos shift keying communications exploiting chaotic shape forming filter and sequence mapping. IEEE transactions on wireless communications, early access. https://doi.org/10.1109/TWC.2021.3135043

  20. Zhang, C., Patras, P., & Haddadi, H. (2019). Deep learning in mobile and wireless networking: A survey. IEEE Communications Surveys & Tutorials, 21(3), 2224–2287. https://doi.org/10.1109/COMST.2019.2904897

    Article  Google Scholar 

  21. Ren, H. P., Yin, H. P., Bai, C., & Yao, J. L. (2020). Performance improvement of chaotic baseband wireless communication using Echo State Network. IEEE Transactions on Communications, 68(10), 6525–6536. https://doi.org/10.1109/TCOMM.2020.3007757

    Article  Google Scholar 

  22. Ren, H. P., Yin, H. P., Zhao, H. E., Bai, C., & Grebogi, C. (2021). Artificial intelligence enhances the performance of chaos-based wireless communication. IET Communications, 15(11), 1467–1479. https://doi.org/10.1049/cmu2.12162

    Article  Google Scholar 

  23. Yin, H. P., Bai, C., & Ren, H. P. (2021). Echo state network based symbol detection in chaotic baseband wireless communication, prepring arXiv: 2103.08159.

  24. Ren, H. P., & Yin, H. P. (2021). Direct symbol decoding using GA-SVM in chaotic baseband wireless communication system. Journal of The Franklin Institute, 358(12), 6348–6367. https://doi.org/10.1016/j.jfranklin.2021.06.012

    Article  Google Scholar 

  25. Wu, Y. B., Yao, Y., Wang, N., & Zhu, M. (2020). Deep learning-based timing offset estimation for deep-sea vertical underwater acoustic communications. Applied Sciences, 10, 8651. https://doi.org/10.3390/app10238651

    Article  Google Scholar 

  26. He, C. B., Huang, J. G., & Zhang, Q. F. (2010). Development of high data-rate underwater acoustic communications. Information Security and Communications Privacy, 12, 81–83. https://doi.org/10.3969/j.issn.1009-8054.2010.12.036

    Article  Google Scholar 

  27. He, Z. Q., Li, X. Q., & Ni, Y. H. (2020). High throughput LFM-BPSK integrated waveform based on variable rate. Computer Applications and Software, 37(5), 114–117. https://doi.org/10.3969/j.issn.1000-386x.2020.05.020

    Article  Google Scholar 

  28. Hu, T. Z., Xie, R., Liu, J., & Luo, K. (2016). Joint timing and frequency synchronization in LFM-MPSK based radar and communication integrated system. Journal of Signal Processing, 36(10), 1687–1697. https://doi.org/10.16798/j.issn.1003-0530.2020.10.008

  29. Ren, H. P., Bai, C., Kong, Q. J., Baptista, M. S., & Grebogi, C. (2017). A chaotic spread spectrum system for underwater acoustic communication. Physica A, 478(15), 77–92. https://doi.org/10.1016/j.physa.2017.02.036

  30. Chitre, M. (2007). A high-frequency warm shallow water acoustic communications channel model and measurements. The Journal of the Acoustical Society of America, 12(5), 2580–2586. https://doi.org/10.1121/1.2782884

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai-Peng Ren.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This research was funded in part by the Scientific and Technological Innovation Leading Talents Program of Shaanxi Province, China Postdoctoral Science Foundation Funded Project (2020M673349), Outstanding Chinese and Foreign Youth Exchange Program of China Association for Science and Technology (CAST2019) and Natural Science Foundation of Shaanxi Province (2022JQ-667).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, C., Hu, XY. & Ren, HP. Experimental validation of carrier waveform inter-displacement modulation with software defined electronics platform. Telecommun Syst 80, 239–249 (2022). https://doi.org/10.1007/s11235-022-00902-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-022-00902-5

Keywords

Navigation