Skip to main content

Hybrid wideband transceiver design for achievable rate maximization in millimeter-wave MIMO systems

Abstract

This paper proposes two algorithms for hybrid (Analog–Digital) beamforming in a single-user millimeter-wave (mm-wave) multi-input multi-output (MIMO) systems under frequency selective channels. Hybrid architecture has a potential to reduce the number of radio frequency (RF) chains to far less than the number of antennas and, it results in low hardware complexity, power efficiency and cost-saving to the system. Since practical broadband systems are frequency selective in nature therefore, the challenging aspect of this problem is to have only one analog RF processing matrix at source and destination over the entire frequency band. To address this problem for spectral efficiency maximization, the first algorithm performs multi-linear singular value decomposition on different sub-carriers to derive the common analog combiner over the allocated frequency-spectrum. Then, a problem is formulated for designing the common analog precoder that attempts to extract the optimal phase values for gain maximization of the equivalent channel observed from baseband processing units at transmitter and receiver. To significantly reduce the computational complexity in comparison to the first algorithm, the second algorithm employs classification of beamforming vectors for gain maximization of the equivalent baseband channel over all sub-carriers to find the analog RF precoding/combining matrices. Digital baseband processing components are derived by diagonalizing the equivalent baseband channel corresponding to each frequency-carrier. Computational complexity of the second algorithm is significantly less than the several existing designs. Computer simulations reveal that the proposed algorithms show near-optimal performance under diverse scenarios of system configuration parameters.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Abbreviations

3G:

Third generation mobile cellular networks

Alt-Min:

Alternating minimization

AoD :

Azimuth angle of departure

AoA :

Azimuth angle of arrival

BS:

Base station

CSI:

Channel state information

CTF:

Channel transfer function

FFT:

Fast Fourier Transform

HOSVD:

Higher-order singular value decomposition

LTE-A:

Long Term Evolution Advanced

mm-wave:

Millimeter wave

MIMO:

Multi-input multi-output

MMSE:

Minimum-mean-squared-error

OFDM:

Orthogonal frequency division multiplexing

PCA:

Principal component analysis

RF:

Radio Frequency

SVD:

Singular value decomposition

SNR:

Signal-to-noise ratio

ULA:

Uniform linear array

UE:

User equipment

ZMCSCG:

Zero-mean circularly symmetric complex Gaussian

References

  1. Hemadeh, I. A., Satyanarayana, K., El-Hajjar, M., & Hanzo, L. (2018). Millimeter-wave communications: Physical channel models, design considerations, antenna constructions, and link-budget. IEEE Commun. Surv. Tutorials, 20(2), 870–913.

    Article  Google Scholar 

  2. Hemadeh, I. A., El-Hajjar, M., Won, S. H., & Hanzo, L. (2017). Multiuser steered multiset space-time shift keying for millimeter-wave communications. IEEE Transactions on Vehicular Technology, 66(6), 5491–5495.

    Article  Google Scholar 

  3. J. Zhang, S. Chen, Y. Lin, J. Zheng, B. Ai, and L. Hanzo, “Cell-free massive MIMO: A new next-generation paradigm,” IEEE Access, vol. 7, pp. 99 878–99 888, 2019.

  4. Moghadam, N. N., Fodor, G., Bengtsson, M., & Love, D. J. (2018). On the energy efficiency of MIMO hybrid beamforming for millimeter-wave systems with nonlinear power amplifiers. IEEE Transactions on Wireless Communications, 17(11), 7208–7221. https://doi.org/10.1109/TWC.2018.2865786

    Article  Google Scholar 

  5. T. S. Rappaport, S. Sun, R. Mayzus, H. Zhao, Y. Azar, K. Wang, G. N. Wong, J. K. Schulz, M. Samimi, and F. G. Jr., “Millimeter wave mobile communications for 5G cellular: It will work!” IEEE Access, vol. 1, pp. 335–349, 2013.

  6. Boccardi, F., Heath, R. W., Lozano, A., Marzetta, T. L., & Popovski, P. (2014). Five disruptive technology directions for 5G. IEEE Communications Magazine, 52(2), 74–80. https://doi.org/10.1109/MCOM.2014.6736746

    Article  Google Scholar 

  7. Andrews, J. G., et al. (2014). What Will 5G Be? IEEE Journal on Selected Areas in Communications, 32(6), 1065–1082. https://doi.org/10.1109/JSAC.2014.2328098

    Article  Google Scholar 

  8. Buzzi, S., D’Andrea, C., Foggi, T., Ugolini, A., & Colavolpe, G. (2018). Single-carrier modulation versus OFDM for millimeter-wave wireless MIMO. IEEE Transactions on Communications, 66(3), 1335–1348.

    Article  Google Scholar 

  9. Zhang, D., Wang, Y., Li, X., & Xiang, W. (2018). Hybridly Connected Structure for Hybrid Beamforming in mmWave Massive MIMO Systems. IEEE Transactions on Communications, 66(2), 662–674.

    Article  Google Scholar 

  10. Yu, X., Shen, J., Zhang, J., & Letaief, K. B. (2016). Alternating Minimization Algorithms for Hybrid Precoding in Millimeter Wave MIMO Systems. IEEE Journal of Selected Topics in Signal Processing, 10(3), 485–500. https://doi.org/10.1109/JSTSP.2016.2523903

    Article  Google Scholar 

  11. Kaushik, A., Thompson, J., Vlachos, E., Tsinos, C. G., & Chatzinotas, S. (2019). Dynamic RF chain selection for energy efficient and low complexity hybrid beamforming in millimeter wave MIMO systems. IEEE Trans. Green Commun. Netw., 3(4), 886–900.

    Article  Google Scholar 

  12. J. Zhang, A. Wiesel and M. Haardt, "Low rank approximation based hybrid precoding schemes for multi-carrier single-user massive MIMO systems. In: 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2016, pp. 3281–3285, https://doi.org/10.1109/ICASSP.2016.7472284.

  13. Jiang, L., & Jafarkhani, H. (2019). Multi-user analog beamforming in millimeter wave MIMO systems based on path angle information. IEEE Transactions on Wireless Communications, 18(1), 608–619.

    Article  Google Scholar 

  14. Ayach, O. E., Rajagopal, S., Abu-Surra, S., Pi, Z., & Heath, R. W., Jr. (2014). Spatially sparse precoding in millimeter wave MIMO systems. IEEE Transactions on Wireless Communications, 13(3), 1499–1513.

    Article  Google Scholar 

  15. Alkhateeb, A., El Ayach, O., Leus, G., & Heath, R. W. (2013). Hybrid precoding for millimeter wave cellular systems with partial channel knowledge. Information Theory and Applications Workshop (ITA), 2013, 1–5. https://doi.org/10.1109/ITA.2013.6522603

    Article  Google Scholar 

  16. Alkhateeb, A., El Ayach, O., Leus, G., & Heath, R. W. (2014). Channel estimation and hybrid precoding for millimeter wave cellular systems. IEEE Journal of Selected Topics in Signal Processing, 8(5), 831–846. https://doi.org/10.1109/JSTSP.2014.2334278

    Article  Google Scholar 

  17. Sohrabi, F., & Yu, W. (2016). Hybrid digital and analog beamforming design for large-scale antenna arrays. IEEE Journal of Selected Topics in Signal Processing, 10(3), 501–513. https://doi.org/10.1109/JSTSP.2016.2520912

    Article  Google Scholar 

  18. Sohrabi, F., & Yu, W. (2017). Hybrid analog and digital beamforming for mmWave OFDM large-scale antenna arrays. IEEE Journal on Selected Areas in Communications, 35(7), 1432–1443.

    Article  Google Scholar 

  19. Zhang, D., Wang, Y., Li, X., & Xiang, W. (2018). Hybridly Connected Structure for Hybrid Beamforming in mmWave Massive MIMO Systems. IEEE Transactions on Communications, 66, 662–674.

    Article  Google Scholar 

  20. Magueta, R., Castanheira, D., Silva, A., Dinis, R., & Gameiro, A. (2019). Hybrid multi-user equalizer for massive MIMO millimeter-wave dynamic subconnected architecture. IEEE Access, 7, 79017–79029.

    Article  Google Scholar 

  21. Li, X.; Alkhateeb, A. Deep Learning for Direct Hybrid Precoding in Millimeter Wave Massive MIMO Systems. In: Proceedings of the 2019 53rd Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, CA, USA, 3–6 November 2019; pp. 800–805.

  22. Ying, K., Gao, Z., Lyu, S., Wu, Y., Wang, H., & Alouini, M. (2020). GMD-based hybrid beamforming for large reconfigurable intelligent surface assisted millimeter-wave massive MIMO. IEEE Access, 8, 19530–19539. https://doi.org/10.1109/ACCESS.2020.2968456

    Article  Google Scholar 

  23. Zhang, R., Zou, W., Wang, Y., & Cui, M. (2019). Hybrid precoder and combiner design for single-user mmWave MIMO systems. IEEE Access, 7, 63818–63828.

    Article  Google Scholar 

  24. Lin, T., Cong, J., Zhu, Y., Zhang, J., & Letaief, K. B. (2019). Hybrid beamforming for millimeter wave systems using the MMSE criterion. IEEE Transactions on Communications, 67(5), 3693–3708.

    Article  Google Scholar 

  25. Cong, J., Lin, T., & Zhu, Y. (2018). Hybrid MMSE beamforming for multiuser millimeter-wave communication systems. IEEE Communications Letters, 22(11), 2390–2393.

    Article  Google Scholar 

  26. Heath, R. W., González-Prelcic, N., Rangan, S., Roh, W., & Sayeed, A. M. (2016). An Overview of Signal Processing Techniques for Millimeter Wave MIMO Systems. IEEE Journal of Selected Topics in Signal Processing, 10(3), 436–453. https://doi.org/10.1109/JSTSP.2016.2523924

    Article  Google Scholar 

  27. Liang, L., Xu, W., & Dong, X. (2014). Low-complexity hybrid precoding in massive multiuser mimo systems. IEEE Wireless Communications Letters, 3, 653–656.

    Article  Google Scholar 

  28. Li, J., Xiao, L., Xu, X., & Zhou, S. (2016). Robust and low complexity hybrid beamforming for uplink multiuser mmwave mimo systems. IEEE Communications Letters, 20, 1140–1143.

    Article  Google Scholar 

  29. Payami, S., Ghoraishi, M., & Dianati, M. (2016). “Hybrid beamforming for large antenna arrays with phase shifter selection. IEEE Transactions on Wireless Communications, PP(99), 1–1.

    Google Scholar 

  30. K. Satyanarayana, M. El-Hajjar, P. Kuo, A. Mourad and L. Hanzo, "Millimeter Wave Hybrid Beamforming with DFT-MUB Aided Precoder Codebook Design. In: 2017 IEEE 86th Vehicular Technology Conference (VTC-Fall), 2017, pp. 1–5, https://doi.org/10.1109/VTCFall.2017.8288023.

  31. Xiao, Z., He, T., Xia, P., & Xia, X.-G. (2016). ‘Hierarchical codebook design for beamforming training in millimeter-wave communication.’ IEEE Transactions on Wireless Communications, 15(5), 3380–3392.

    Article  Google Scholar 

  32. Chiang, H. L., et al. (2018). Hybrid beamforming based on implicit channel state information for millimeter wave links. IEEE J. Sel. Topics Signal Process, 12(2), 326–339.

    Article  Google Scholar 

  33. Huang, Y., Liu, C., Song, Y., et al. (2020). DFT codebook-based hybrid precoding for multiuser mmWave massive MIMO systems. EURASIP J. Adv. Signal Process., 2020, 11. https://doi.org/10.1186/s13634-020-00669-4

    Article  Google Scholar 

  34. Zhu, Y., Tian, Y., & Yang, C. (2016). HOSVD-based limited feedback and precoding design for massive MIMO systems. IEEE/CIC International Conference on Communications in China (ICCC Workshops), 2016, 1–6. https://doi.org/10.1109/ICCChinaW.2016.7586719

    Article  Google Scholar 

  35. Tsinos, C. G., Maleki, S., Chatzinotas, S., & Ottersten, B. (2017). On the Energy-Efficiency of Hybrid Analog-Digital Transceivers for Single- and Multi-Carrier Large Antenna Array Systems. IEEE Journal on Selected Areas in Communications, 35(9), 1980–1995. https://doi.org/10.1109/JSAC.2017.2720918

    Article  Google Scholar 

  36. L. Liu, and Y. Tian, “Hybrid precoding based on tensor decomposition for mmWave 3D-MIMO systems. In: Proc. IEEE/CIC Int. Conf. Commun. China (ICCC), Qingdao, China, Oct. 2017, pp. 1–6.

  37. Araujo, D. C., et al. (2019). Tensor-based channel estimation for massive MIMOOFDM systems. IEEE Access, 7, 42133–42147.

    Article  Google Scholar 

  38. Ruble, M., & Guvenc, I. (2020). Multilinear singular value decomposition for millimeter wave channel parameter estimation. IEEE Access, 8, 75592–75606.

    Article  Google Scholar 

  39. de Almeida, A. L. F., Favier, G., & Mota, J. C. M. (2008). A constrained factor decomposition with application to MIMO antenna systems. IEEE Transactions on Signal Processing, 56(6), 2429–2442.

    Article  Google Scholar 

  40. Kolda, T. G., & Bader, B. W. (2009). Tensor decompositions and applications. SIAM Review, 51(3), 455–500.

    Article  Google Scholar 

  41. Sidiropoulos, N. D., et al. (2017). Tensor decomposition for signal processing and machine learning. IEEE Transactions on Signal Processing, 65(13), 3551–3582.

    Article  Google Scholar 

  42. O. KazíK, K. Peková, J. míd and R. Neruda, "Clustering based classification in data mining method recommendation. In: 2013 12th International Conference on Machine Learning and Applications, 2013, pp. 356–361, https://doi.org/10.1109/ICMLA.2013.148.

  43. N. Chiurtu, B. Rimoldi and E. Telatar, "On the capacity of multi-antenna Gaussian channels. In: Proceedings. 2001 IEEE International Symposium on Information Theory (IEEE Cat. No.01CH37252), 2001, pp. 53 https://doi.org/10.1109/ISIT.2001.935916.

  44. Shah, Philipp, C. Wieser and F. Bry, “Parallel higher-order SVD for tag-recommendations.” (2012).

  45. R. Martín-Clemente and V. Zarzoso, "L1-PCA signal subspace identification for non-sphered data under the ICA model. In: 2017 IEEE 7th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP), 2017, pp. 1–5, https://doi.org/10.1109/CAMSAP.2017.8313181.

  46. Tsai, T., Chiu, M., & Chao, C. (2019). Sub-system SVD hybrid beamforming design for millimeter wave multi-carrier systems. IEEE Transactions on Wireless Communications, 18(1), 518–531.

    Article  Google Scholar 

Download references

Acknowledgement

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (No. NRF-2017R1D1A3B03032125).

Funding

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. NRF-2017R1D1A3B03032125).

Author information

Authors and Affiliations

Authors

Contributions

This research work was conducted independently and, all the details regarding research question, problem formulation, proposed solution, simulation results with discussion and manuscript preparation are being provided by the corresponding author HMT Mustafa.

Corresponding author

Correspondence to Hafiz Muhammad Tahir Mustafa.

Ethics declarations

Conflict of interests

The whole research work is being submitted by a single author, therefore it is not applicable here.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mustafa, H.M.T. Hybrid wideband transceiver design for achievable rate maximization in millimeter-wave MIMO systems. Telecommun Syst 78, 497–513 (2021). https://doi.org/10.1007/s11235-021-00821-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-021-00821-x

Keywords

  • Hybrid beamforming
  • Massive MIMO
  • Millimeter wave
  • Multi-linear SVD