Skip to main content
Log in

Intelligent and hierarchical message delivery mechanism in vehicular delay tolerant networks

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

Vehicular delay tolerant networks (VDTNs) present an efficient platform for delivering delay tolerant contents in vehicular networks by utilizing vehicle to vehicle or vehicle to road side infrastructure communications. Routing protocols play an essential role in VDTNs environment to provide high routing performance. However, most of existing vehicular network routing methods suffer from scalability issues and cannot make a trade-off between different performance criteria. In this paper we introduce an innovative hierarchical VDTNs scheme, called Hierarchical and Intelligent Vehicular Delay Tolerant Content Routing (HI-VDTCR), to establish a scalable delivery routing mechanism and provide a balance between different performance criteria. HI-VDTCR consists of two layers. An upper layer is responsible for sending messages to the destination vicinities without imposing high overhead to the network and a lower layer is tasked with delivering messages to the destination node by introducing a Markov decision process model, as an efficient reinforcement learning algorithm, for forwarding messages to the destination rendezvous. The proposed hierarchical and intelligent design empowers HI-VDTCR to provide an acceptable scalability in terms of network operation area and number of vehicle nodes. Evaluation results confirm that HI-VDTCR method outperforms other well-known vehicular routing methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29

Similar content being viewed by others

References

  1. Soares, V. N. G. J., & Rodrigues, J. J. P. C. (2015). 4—Vehicular delay-tolerant networks (VDTNs). In J. J. P. C. Rodrigues (Ed.), Advances in delay-tolerant networks (DTNs) (pp. 61–80). Woodhead Publishing. https://doi.org/10.1533/9780857098467.1.61

  2. Soares, V. N. G. J., Farahmand, F., & Rodrigues, J. J. P. C. (2011). Traffic differentiation support in vehicular delay-tolerant networks. Telecommunication Systems, 48(1), 151–162. https://doi.org/10.1007/s11235-010-9325-z.

    Article  Google Scholar 

  3. Benamar, N., Singh, K. D., Benamar, M., El Ouadghiri, D., & Bonnin, J.-M. (2014). Routing protocols in vehicular delay tolerant networks: A comprehensive survey. Computer Communications, 48, 141–158. https://doi.org/10.1016/j.comcom.2014.03.024.

    Article  Google Scholar 

  4. Chen, J., Mao, G., Li, C., Liang, W., & Zhang, D. (2018). Capacity of cooperative vehicular networks with infrastructure support: Multiuser case. IEEE Transactions on Vehicular Technology, 67(2), 1546–1560. https://doi.org/10.1109/TVT.2017.2753772.

    Article  Google Scholar 

  5. Schoch, E., Kargl, F., Weber, M., & Leinmuller, T. (2008). Communication patterns in VANETs. IEEE Communications Magazine, 46(11), 119–125. https://doi.org/10.1109/MCOM.2008.4689254.

    Article  Google Scholar 

  6. Kang, H., Ahmed, S. H., Kim, D., & Chung, Y.-S. (2015). Routing protocols for vehicular delay tolerant networks: A survey. International Journal of Distributed Sensor Networks,. https://doi.org/10.1155/2015/325027.

    Article  Google Scholar 

  7. Wu, C., Yoshinaga, T., Bayar, D., & Ji, Y. (2019). Learning for adaptive anycast in vehicular delay tolerant networks. Journal of Ambient Intelligence and Humanized Computing, 10(4), 1379–1388. https://doi.org/10.1007/s12652-018-0819-y.

    Article  Google Scholar 

  8. Yan, L., Shen, H., & Chen, K. (2018). MobiT: Distributed and congestion-resilient trajectory-based routing for vehicular delay tolerant networks. IEEE/ACM Transactions on Networking, 26(3), 1078–1091. https://doi.org/10.1109/TNET.2018.2812169.

    Article  Google Scholar 

  9. Pescosolido, L., Conti, M., & Passarella, A. (2019). D2D data offloading in vehicular environments with optimal delivery time selection. Computer Communications, 146, 63–84. https://doi.org/10.1016/j.comcom.2019.07.016.

    Article  Google Scholar 

  10. Woo, H., & Lee, M. (2018). A hierarchical location service architecture for VANET with aggregated location update. Computer Communications, 125, 38–55. https://doi.org/10.1016/j.comcom.2018.05.001.

    Article  Google Scholar 

  11. Akhavan Bitaghsir, S., & Khonsari, A. (2019). Modeling and improving the throughput of vehicular networks using cache enabled RSUs. Telecommunication Systems, 70(3), 391–404. https://doi.org/10.1007/s11235-018-0495-4.

    Article  Google Scholar 

  12. Cerf, V., Burleigh, S., Hooke, A., Torgerson, L., Durst, L., Scott, K., Fall, K., & Weiss, H. (2007). Delay-tolerant networking architecture. In Internet RFC4838. https://doi.org/10.17487/RFC4838

  13. Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. A Bradford Book.

  14. Spyropoulos, T., Psounis, K., & Raghavendra, C. S. (2005). Spray and wait: An efficient routing scheme for intermittently connected mobile networks. In Proceedings of the 2005 ACM SIGCOMM workshop on Delay-tolerant networking, Philadelphia, Pennsylvania, USA.

  15. Lindgren, A., Doria, A., & Schelén, O. (2003). Probabilistic routing in intermittently connected networks. ACM SIGMOBILE Mobile Computing and Communications Review, 7(3), 19–20. https://doi.org/10.1145/961268.961272.

    Article  Google Scholar 

  16. Burgess, J., Gallagher, B., Jensen, D., & Levine, B. N. (2006). MaxProp: Routing for vehicle-based disruption-tolerant networks. In Proceedings IEEE INFOCOM 2006 (pp. 23–29). https://doi.org/10.1109/INFOCOM.2006.228

  17. Chen, K., & Shen, H. (2015). DTN-FLOW: Inter-landmark data flow for high-throughput routing in DTNs. IEEE/ACM Transactions on Networking, 23(1), 212–226. https://doi.org/10.1109/TNET.2013.2296751.

    Article  Google Scholar 

  18. Chen, C., & Chen, Z. (2009). Exploiting contact spatial dependency for opportunistic message forwarding. IEEE Transactions on Mobile Computing, 8(10), 1397–1411. https://doi.org/10.1109/TMC.2009.55.

    Article  Google Scholar 

  19. Li, Z., & Shen, H. (2013). SEDUM: Exploiting social networks in utility-based distributed routing for DTNs. IEEE Transactions on Computers, 62(1), 83–97. https://doi.org/10.1109/TC.2011.232.

    Article  Google Scholar 

  20. Yuan, Q., Cardei, I., & Wu, J. (2012). An efficient prediction-based routing in disruption-tolerant networks. IEEE Transactions on Parallel and Distributed Systems, 23(1), 19–31. https://doi.org/10.1109/TPDS.2011.140.

    Article  Google Scholar 

  21. González, M. C., Hidalgo, C. A., & Barabási, A.-L. (2008). Understanding individual human mobility patterns. Nature, 453(7196), 779–782. https://doi.org/10.1038/nature06958.

    Article  Google Scholar 

  22. Hsu, W., Spyropoulos, T., Psounis, K., & Helmy, A. (2007). Modeling time-variant user mobility in wireless mobile networks. In IEEE INFOCOM 2007, 6–12 May 2007 (pp. 758-766). https://doi.org/10.1109/INFCOM.2007.94.

  23. Talipov, E., Chon, Y., & Cha, H. (2013). Content sharing over smartphone-based delay-tolerant networks. IEEE Transactions on Mobile Computing, 12(3), 581–595. https://doi.org/10.1109/TMC.2012.21.

    Article  Google Scholar 

  24. Khabbaz, M. J., Fawaz, W. F., & Assi, C. M. (2011). Probabilistic bundle relaying schemes in two-hop vehicular delay tolerant networks. IEEE Communications Letters, 15(3), 281–283. https://doi.org/10.1109/LCOMM.2011.011011.102512.

    Article  Google Scholar 

  25. Wu, D., Zhu, G., & Zhao, D. (2013). Adaptive carry-store forward scheme in two-hop vehicular delay tolerant networks. IEEE Communications Letters, 17(4), 721–724. https://doi.org/10.1109/LCOMM.2013.022713.130123.

    Article  Google Scholar 

  26. Soares, V. N. G. J., Rodrigues, J. J. P. C., & Farahmand, F. (2014). GeoSpray: A geographic routing protocol for vehicular delay-tolerant networks. Information Fusion, 15, 102–113. https://doi.org/10.1016/j.inffus.2011.11.003.

    Article  Google Scholar 

  27. Xiao, M., Wu, J., & Huang, L. (2015). Home-based zero-knowledge multi-copy routing in mobile social networks. IEEE Transactions on Parallel and Distributed Systems, 26(5), 1238–1250. https://doi.org/10.1109/TPDS.2014.2319211.

    Article  Google Scholar 

  28. Chen, K., & Shen, H. (2019). Greedyflow: Distributed greedy packet routing between landmarks in DTNs. Ad Hoc Networks, 83, 168–181. https://doi.org/10.1016/j.adhoc.2018.09.010.

    Article  Google Scholar 

  29. Ravaei, B., Sabaei, M., Pedram, H., & Valaee, S. (2018). Community-aware single-copy content forwarding in mobile social network. Wireless Networks, 24(7), 2705–2721. https://doi.org/10.1007/s11276-017-1494-1.

    Article  Google Scholar 

  30. Xiao, M., Wu, J., & Huang, L. (2014). Community-aware opportunistic routing in mobile social networks. IEEE Transactions on Computers, 63(7), 1682–1695. https://doi.org/10.1109/TC.2013.55.

    Article  Google Scholar 

  31. Piorkowski, M., Sarafijanovic-Djukic, N., & Grossglauser, M. (2009). CRAWDAD dataset epfl/mobility (Vol. 2009-02-24). https://doi.org/10.15783/C7J010

  32. Keranen, A., Ott, J., & Karkkainen, T. (2009). The ONE simulator for DTN protocol evaluation. In Proceedings of the 2nd international conference on simulation tools and techniques, Rome, Italy (pp. 1–10). https://doi.org/10.4108/ICST.SIMUTOOLS2009.5674

  33. Zhang, L., Yu, B., & Pan, J. (2016). GeoMobCon: A mobility-contact-aware geocast scheme for urban VANETs. IEEE Transactions on Vehicular Technology, 65, 6715–6730. https://doi.org/10.1109/TVT.2015.2476504.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bahman Ravaei.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ravaei, B., Rahimizadeh, K. & Dehghani, A. Intelligent and hierarchical message delivery mechanism in vehicular delay tolerant networks. Telecommun Syst 78, 65–83 (2021). https://doi.org/10.1007/s11235-021-00801-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-021-00801-1

Keywords

Navigation