Skip to main content
Log in

A systematic review of the research framework and evolution of smart homes based on the internet of things

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

The Internet of Things has brought unprecedented technological innovation to smart homes, but the impact of this change on technology and users is limited and dispersed. Based on a systematic literature review, the present research conducted a quantitative analysis of 2874 papers (published in 2008–2020) obtained from the Web of Science to bridge the research gap. The current research identifies the development status and trends, country distribution, and journal categories in this area. Then, based on the main topics covered by smart homes, we proposed a holistic research framework that integrates the infrastructure layer, the communications technology layer, the data analytics layer, and the user service layer. The framework analyzed wireless sensing networks, communication protocols, and security threats, as well as the activity identification process and user services, highlighting the lack of some degree of integration in this area. This study also discussed the evolution of hot spots in the field of smart homes and summarized potential future research directions. Finally, in the discussion section, this paper summarized the research contribution and compared the main proposed technical solutions. We hope this work will provide a solid basis for research and practical guidance for scholars and developers interested in smart homes based on the Internet of Things.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Al-Fuqaha, A., Guizani, M., Mohammadi, M., Aledhari, M., & Ayyash, M. (2015). Internet of things: A survey on enabling technologies, protocols, and applications. IEEE Commun Surv TUTORIALS, 17, 2347–2376.

    Article  Google Scholar 

  2. Machorro-Cano, I., Alor-Hernández, G., Paredes-Valverde, M. A., Rodríguez-Mazahua, L., Sánchez-Cervantes, J. L., & Olmedo-Aguirre, J. O. (2020). HEMS-IoT: a big data and machine learning-based smart home system for energy saving. Energies. https://doi.org/10.3390/en13051097.

    Article  Google Scholar 

  3. Alaa, M., Zaidan, A. A., Zaidan, B. B., Talal, M., & Kiah, M. L. M. (2017). A review of smart home applications based on Internet of Things. Journal of Network and Computer Applications, 97, 48–65. https://doi.org/10.1016/j.jnca.2017.08.017.

    Article  Google Scholar 

  4. Almusaylim, Z. A., & Zaman, N. (2019). A review on smart home present state and challenges: linked to context-awareness internet of things (IoT). Wirel Netw, 25, 3193–3204. https://doi.org/10.1007/s11276-018-1712-5.

    Article  Google Scholar 

  5. Alam, M. R., Reaz, M. B., & Ali, M. A. M. (2012). A review of smart homes-past, present, and Future. IEEE Transactions on Systems, Man, and Cybernetics Part C: Applications and Reviews, 42, 1190–1203. https://doi.org/10.1109/tsmcc.2012.2189204.

    Article  Google Scholar 

  6. Gubbi, J., Buyya, R., Marusic, S., & Palaniswami, M. (2013). Internet of Things (IoT): A vision, architectural elements, and future directions. Futur Gener Comput Syst Int J ESCIENCE, 29, 1645–1660. https://doi.org/10.1016/j.future.2013.01.010.

    Article  Google Scholar 

  7. Zhang, Q., Yin, M. L., & YJ, . (2007). A regular nine-prism array of patches for wireless LANs. IEICE Transactions on Communications, E-90-B(6), 1467–1473.

    Article  Google Scholar 

  8. Dong, Y. Z., Gao, S., Luo, Q., Dong, S. W., & Wei, G. (2019). Filtering antennas for energy harvesting in wearable systems. Int J Numer Model Netw Devices Fields, 32, 12. https://doi.org/10.1002/jnm.2661.

    Article  Google Scholar 

  9. Eltresy, N. A., Dardeer, O. M., Al-Habal, A., Elhariri, E., Abotaleb, A. M., Elsheakh, D. N., Khattab, A., Taie, S. A., Mostafa, H., Elsadek, H. A., & Abdallah, E. A. (2020). Smart home IoT system by using RF energy harvesting. J Sensors, 2020, 1–14. https://doi.org/10.1155/2020/8828479.

    Article  Google Scholar 

  10. Roudjane, M., Bellemare-Rousseau, S., Khalil, M., Gorgutsa, S., Miled, A., & Messaddeq, Y. (2018). A portable wireless communication platform based on a multi-material fiber sensor for real-time breath detection. Sensors (Switzerland). https://doi.org/10.3390/s18040973.

    Article  Google Scholar 

  11. Wang, L., An, H., Zhu, H., & Liu, W. (2020). MobiKey: mobility-based secret key generation in smart home. IEEE Internet of Things Journal, 7, 7590–7600. https://doi.org/10.1109/JIOT.2020.2986399.

    Article  Google Scholar 

  12. Chen, M., Wan, J. F., & Li, F. (2012). Machine-to-machine communications: architectures, standards and applications. KSII Trans Int Inf Syst, 6, 480–497. https://doi.org/10.3837/tiis.2012.02.002.

    Article  Google Scholar 

  13. Mistry, I., Tanwar, S., Tyagi, S., & Kumar, N. (2020). Blockchain for 5G-enabled IoT for industrial automation: a systematic review, solutions, and challenges. Mechanical Systems and Signal Processing, 135, 21. https://doi.org/10.1016/j.ymssp.2019.106382.

    Article  Google Scholar 

  14. Lazaroiu C, Roscia M (2017) Smart district through IoT and Blockchain. In: 2017 IEEE 6th international conference on renewable energy research and applications (ICRERA), pp 454–461

  15. Kong, S., Kim, Y., Ko, R., & Joo, S. K. (2015). Home appliance load disaggregation using cepstrum-smoothing-based method. IEEE Transactions on Consumer Electronics, 61, 24–30. https://doi.org/10.1109/tce.2015.7064107.

    Article  Google Scholar 

  16. Barcelo, M., Correa, A., Llorca, J., Tulino, A. M., Vicario, J. L., & Morell, A. (2016). IoT-cloud service optimization in next generation smart environments. IEEE Journal on Selected Areas in Communications, 34, 4077–4090. https://doi.org/10.1109/jsac.2016.2621398.

    Article  Google Scholar 

  17. Youngblood, G. M., & Cook, D. J. (2007). Data mining for hierarchical model creation. IEEE Transactions on Systems, Man, and Cybernetics Part C: Applications and Reviews, 37, 561–572. https://doi.org/10.1109/tsmcc.2007.897341.

    Article  Google Scholar 

  18. Chen, L. M., Nugent, C. D., & Wang, H. (2012). A knowledge-driven approach to activity recognition in smart homes. IEEE Transactions on Knowledge and Data Engineering, 24, 961–974. https://doi.org/10.1109/tkde.2011.51.

    Article  Google Scholar 

  19. Shi, W. S., Cao, J., Zhang, Q., Li, Y. H. Z., & Xu, L. Y. (2016). Edge computing: vision and challenges. IEEE Int Things J, 3, 637–646. https://doi.org/10.1109/jiot.2016.2579198.

    Article  Google Scholar 

  20. Stellios, I., Kotzanikolaou, P., Psarakis, M., Alcaraz, C., & Lopez, J. (2018). A survey of IoT-enabled cyberattacks: assessing attack paths to critical infrastructures and services. IEEE Commun Surv Tutor, 20, 3453–3495. https://doi.org/10.1109/comst.2018.2855563.

    Article  Google Scholar 

  21. Ferreira, M. P., Santos, J. C., Ribeiro de Almeida, M. I., & Reis, N. R. (2014). Mergers & acquisitions research: a bibliometric study of top strategy and international business journals, 1980–2010. Journal of Business Research, 67, 2550–2558. https://doi.org/10.1016/j.jbusres.2014.03.015.

    Article  Google Scholar 

  22. Lutolf R (1992) Smart home concept and the integration of energy meters into a home based system. In: Seventh international conference on metering apparatus and tariffs for electricity supply 1992. IET, pp 277–278

  23. Balta-Ozkan, N., Davidson, R., Bicket, M., & Whitmarsh, L. (2013). Social barriers to the adoption of smart homes. Energy Policy, 63, 363–374. https://doi.org/10.1016/j.enpol.2013.08.043.

    Article  Google Scholar 

  24. De Silva, L. C., Morikawa, C., & Petra, I. M. (2012). State of the art of smart homes. Engineering Applications of Artificial Intelligence, 25, 1313–1321.

    Article  Google Scholar 

  25. Reinisch, C., Kofler, M., Iglesias, F., & Kastner, W. (2010). Think home energy efficiency in future smart homes. EURASIP J Embedded Syst, 2011, 104617. https://doi.org/10.1155/2011/104617.

    Article  Google Scholar 

  26. Chan, M., Esteve, D., Escriba, C., & Campo, E. (2008). A review of smart homes—present state and future challenges. Comput Methods Progr Biomed, 91, 55–81. https://doi.org/10.1016/j.cmpb.2008.02.001.

    Article  Google Scholar 

  27. Djedouboum, A. C., Ari, A. A. A., Gueroui, A. M., Mohamadou, A., & Aliouat, Z. (2018). Big data collection in large-scale wireless sensor networks. Sensors, 18, 34. https://doi.org/10.3390/s18124474.

    Article  Google Scholar 

  28. Nkomo, M., Hancke, G. P., Abu-Mahfouz, A. M., Sinha, S., & Onumanyi, A. J. (2018). Overlay virtualized wireless sensor networks for application in industrial internet of things: a review. Sensors, 18, 33. https://doi.org/10.3390/s18103215.

    Article  Google Scholar 

  29. Lonzetta, A. M., Cope, P., Campbell, J., Mohd, B. J., & Hayajneh, T. (2018). Security Vulnerabilities in bluetooth technology as used in IoT. Journal of Sensor and Actuator Networks, 7, 26. https://doi.org/10.3390/jsan7030028.

    Article  Google Scholar 

  30. Stavropoulos, T. G., Papastergiou, A., Mpaltadoros, L., Nikolopoulos, S., & Kompatsiaris, I. (2020). IoT wearable sensors and devices in elderly care: a literature review. Sensors. https://doi.org/10.3390/s20102826.

    Article  Google Scholar 

  31. Chen, F., Xiao, Z., Cui, L., Lin, Q., Li, J., & Yu, S. (2020). Blockchain for Internet of things applications: a review and open issues. Journal of Network and Computer Applications, 172, 102839. https://doi.org/10.1016/j.jnca.2020.102839.

    Article  Google Scholar 

  32. Alamri, M., Jhanjhi, N. Z., & Humayun, M. (2019). Blockchain for Internet of Things (IoT) research issues challenges & future directions: a review. Int J Comput Sci Netw Secur, 19, 244–258.

    Google Scholar 

  33. Chopra, G., Jha, R. K., & Jain, S. (2017). A survey on ultra-dense network and emerging technologies: Security challenges and possible solutions. Journal of Network and Computer Applications, 95, 54–78. https://doi.org/10.1016/j.jnca.2017.07.007.

    Article  Google Scholar 

  34. Abdullah, T. A. A., Ali, W., Malebary, S., & Abdullah, A. A. (2019). A review of cyber security challenges, attacks and solutions for internet of things based smart home. Int J Comput Sci Netw Secur, 19, 139–146.

    Google Scholar 

  35. Sicato, J. C. S., Sharma, P. K., Loia, V., & Park, J. H. (2019). VPNFilter malware analysis on cyber threat in smart home network. Applied Sciences, 9, 20. https://doi.org/10.3390/app9132763.

    Article  Google Scholar 

  36. Zarpelao, B. B., Miani, R. S., Kawakani, C. T., & de Alvarenga, S. C. (2017). A survey of intrusion detection in Internet of Things. Journal of Network and Computer Applications, 84, 25–37. https://doi.org/10.1016/j.jnca.2017.02.009.

    Article  Google Scholar 

  37. Nandy, T., Bin Idris, M. Y. I., Noor, R. M., Kiah, M. L. M., Lun, L. S., et al. (2019). Review on security of internet of things authentication mechanism. IEEE Access, 7, 151054–151089. https://doi.org/10.1109/access.2019.2947723.

    Article  Google Scholar 

  38. Silva, F. S. D., Silva, E., Neto, E. P., Lemos, M., Neto, A. J. V., & Esposito, F. (2020). A taxonomy of DDoS attack mitigation approaches featured by SDN technologies in IoT scenarios. Sensors. https://doi.org/10.3390/s20113078.

    Article  Google Scholar 

  39. Zaidan, A. A., & Zaidan, B. B. (2020). A review on intelligent process for smart home applications based on IoT: coherent taxonomy, motivation, open challenges, and recommendations. Artificial Intelligence Review, 53, 141–165. https://doi.org/10.1007/s10462-018-9648-9.

    Article  Google Scholar 

  40. Afolabi, A. O., Toivanen, P., Haataja, K., & Mykkanen, J. (2015). Systematic literature review on empirical results and practical implementations of healthcare recommender systems: lessons learned and a novel proposal. Int J Healthc Inf Syst Inform, 10, 1–21. https://doi.org/10.4018/ijhisi.2015100101.

    Article  Google Scholar 

  41. Maskeliunas, R., Damasevicius, R., & Segal, S. (2019). A review of internet of things technologies for ambient assisted living environments. Futur Internet, 11, 23. https://doi.org/10.3390/fi11120259.

    Article  Google Scholar 

  42. Eskofier, B. M., Lee, S. I., Baron, M., Simon, A., Martindale, C. F., Gassner, H., & Klucken, J. (2017). An overview of smart shoes in the internet of health things: gait and mobility assessment in health promotion and disease monitoring. Applied Sciences. https://doi.org/10.3390/app7100986.

    Article  Google Scholar 

  43. Potorti, F., Park, S., Jimenez Ruiz, A. R., Barsocchi, P., Girolami, M., Crivello, A., Lee, S. Y., Lim, J. H., Torres-Sospedra, J., Seco, F., Montoliu, R., Mendoza-Silva, G. M., Rubio, M. D. P., Losada-Gutierrez, C., Espinosa, F., & Macias-Guarasa, J. (2017). Comparing the performance of indoor localization systems through the EvAAL framework. Sensors. https://doi.org/10.3390/s17102327.

    Article  Google Scholar 

  44. Chew, I., Karunatilaka, D., Tan, C. P., & Kalavally, V. (2017). Smart lighting: the way forward? Reviewing the past to shape the future. Energy Build, 149, 180–191. https://doi.org/10.1016/j.enbuild.2017.04.083.

    Article  Google Scholar 

  45. Talal, M., Zaidan, A. A., Zaidan, B. B., Albahri, A. S., Alamoodi, A. H., Albahri, O. S., Alsalem, M. A., Lim, C. K., Tan, K. L., Shir, W. L., & Mohammed, K. I. (2019). Smart home-based IoT for real-time and secure remote health monitoring of triage and priority system using body sensors: multi-driven systematic review. Journal of Medical Systems, 43, 34. https://doi.org/10.1007/s10916-019-1158-z.

    Article  Google Scholar 

  46. Bennett, J., Rokas, O., & Chen, L. M. (2017). Healthcare in the smart home: a study of past present and future. Sustainability, 9, 23. https://doi.org/10.3390/su9050840.

    Article  Google Scholar 

  47. Kabalci, Y., Kabalci, E., Padmanaban, S., Holm-Nielsen, J. B., & Blaabjerg, F. (2019). Internet of things applications as energy internet in smart grids and smart environments. Electronics, 8, 16. https://doi.org/10.3390/electronics8090972.

    Article  Google Scholar 

  48. Bedi, G., Venayagamoorthy, G. K., Singh, R., Brooks, R. R., & Wang, K. C. (2018). Review of Internet of Things (IoT) in electric power and energy systems. IEEE Int Things J, 5, 847–870. https://doi.org/10.1109/jiot.2018.2802704.

    Article  Google Scholar 

  49. Motlagh, N. H., Mohammadrezaei, M., Hunt, J., & Zakeri, B. (2020). Internet of Things (IoT) and the energy sector. Energies. https://doi.org/10.3390/en13020494.

    Article  Google Scholar 

  50. Zaidan, A. A., Zaidan, B. B., Qahtan, M. Y., Albahri, O. S., Albahri, A. S., Alaa, M., Jumaah, F. M., Talal, M., Tan, K. L., Shir, W. L., & Lim, C. K. (2018). A survey on communication components for IoT-based technologies in smart homes. Telecommunication Systems, 69, 1–25. https://doi.org/10.1007/s11235-018-0430-8.

    Article  Google Scholar 

  51. Kitchenham B (2007) Guidelines for performing systematic literature reviews in software engineering. Keele Univ Durham Univ Jt Rep

  52. Souri, A., Navimipour, N. J., & Rahmani, A. M. (2018). Formal verification approaches and standards in the cloud computing: a comprehensive and systematic review. Comput Stand Interfaces, 58, 1–22. https://doi.org/10.1016/j.csi.2017.11.007.

    Article  Google Scholar 

  53. Kitchenham, B., Brereton, O. P., Budgen, D., Turner, M., Bailey, J., & Linkman, S. (2009). Systematic literature reviews in software engineering—a systematic literature review. Inform Softw Technol, 51, 7–15. https://doi.org/10.1016/j.infsof.2008.09.009.

    Article  Google Scholar 

  54. Zhao, X. B. (2017). A scientometric review of global BIM research: analysis and visualization. Automation in Construction, 80, 37–47. https://doi.org/10.1016/j.autcon.2017.04.002.

    Article  Google Scholar 

  55. Muhuri, P., Shukla, A., & Abraham, A. (2019). Industry 4.0: a bibliometric analysis and detailed overview. Engineering Applications of Artificial Intelligence, 78, 218–235. https://doi.org/10.1016/j.engappai.2018.11.007.

    Article  Google Scholar 

  56. Chen, C. M. (2006). CiteSpace II: detecting and visualizing emerging trends and transient patterns in scientific literature. Journal of the American Society for Information Science and Technology, 57, 359–377. https://doi.org/10.1002/asi.20317.

    Article  Google Scholar 

  57. Qin, Y., Zhang, Q., & Liu, Y. (2020). Analysis of knowledge bases and research focuses of cerebral ischemia-reperfusion from the perspective of mapping knowledge domain. Brain Research Bulletin, 156, 15–24.

    Article  Google Scholar 

  58. Pan, W., Jian, L., & Liu, T. (2019). Grey system theory trends from 1991 to 2018: a bibliometric analysis and visualization. Scientometrics, 121, 1407–1434. https://doi.org/10.1007/s11192-019-03256-z.

    Article  Google Scholar 

  59. Small, H. (1973). Co-citation in the scientific literature: a new measure of the relationship between two documents. Journal of the Association for Information Science and Technology, 24, 265–269.

    Google Scholar 

  60. Gubbi, J., Buyya, R., Marusic, S., & Palaniswami, M. (2013). Internet of Things (IoT): a vision, architectural elements, and future directions. Future Generation Computer Systems, 29, 1645–1660. https://doi.org/10.1016/j.future.2013.01.010.

    Article  Google Scholar 

  61. Zanella, A., Bui, N., Castellani, A., Vangelista, L., & Zorzi, M. (2014). Internet of things for smart cities. IEEE Int Things J, 1, 22–32. https://doi.org/10.1109/JIOT.2014.2306328.

    Article  Google Scholar 

  62. Islam, S. M. R., Kwak, D., Kabir, M. H., Hossain, M., & Kwak, K. (2015). The internet of things for health care: a comprehensive survey. IEEE Access, 3, 678–708. https://doi.org/10.1109/ACCESS.2015.2437951.

    Article  Google Scholar 

  63. Riste Skastojkoska, B. L., & Trivodaliev, K. V. (2017). A review of Internet of Things for smart home: challenges and solutions. Journal of Cleaner Production, 140, 1454–1464. https://doi.org/10.1016/j.jclepro.2016.10.006.

    Article  Google Scholar 

  64. Lyons, B. E., Austin, D., Seelye, A., Petersen, J., Yeargers, J., Riley, T., Sharma, N., Mattek, N., Wild, K., Dodge, H., & Kaye, J. A. (2015). Pervasive computing technologies to continuously assess Alzheimer’s disease progression and intervention efficacy. Front Aging Neurosci, 7, 14. https://doi.org/10.3389/fnagi.2015.00102.

    Article  Google Scholar 

  65. Kambourakis, G., Kolias, C., Geneiatakis, D., Karopoulos, G., Makrakis, G. M., & Kounelis, I. (2020). A state-of-the-art review on the security of mainstream IoT wireless PAN protocol stacks. Symmetry (Basel), 12, 579. https://doi.org/10.3390/SYM12040579.

    Article  Google Scholar 

  66. Nag, A., & Mukhopadhyay, S. C. (2015). Occupancy detection at smart home using real-time dynamic thresholding of flexiforce sensor. IEEE Sensors Journal, 15, 4457–4463. https://doi.org/10.1109/jsen.2015.2421348.

    Article  Google Scholar 

  67. Suryadevara, N. K., & Mukhopadhyay, S. C. (2012). Wireless sensor network based home monitoring system for wellness determination of elderly. IEEE Sensors Journal, 12, 1965–1972. https://doi.org/10.1109/jsen.2011.2182341.

    Article  Google Scholar 

  68. Nikoukar, A., Raza, S., Poole, A., Gunes, M., & Dezfouli, B. (2018). Low-power wireless for the internet of things: standards and applications. IEEE Access, 6, 67893–67926. https://doi.org/10.1109/access.2018.2879189.

    Article  Google Scholar 

  69. Yang, J., Poellabauer, C., Mitra, P., & Neubecker, C. (2020). Beyond beaconing: emerging applications and challenges of BLE. Ad Hoc Networks, 97, 12. https://doi.org/10.1016/j.adhoc.2019.102015.

    Article  Google Scholar 

  70. Solutions, N., Pathak, G., & Gutierrez, J. (2020). Security in low powered wide area networks: opportunities for software defined network-supported solutions. Electronics, 9, 1195.

    Article  Google Scholar 

  71. Awin, F. A., Alginahi, Y. M., Abdel-Raheem, E., & Tepe, K. (2019). Technical issues on cognitive radio-based internet of things systems: a survey. IEEE Access, 7, 97887–97908. https://doi.org/10.1109/access.2019.2929915.

    Article  Google Scholar 

  72. Mbarek, B., Ge, M., & Pitner, T. (2020). Trust-based authentication for smart home systems. Wirel Personal Commun. https://doi.org/10.1007/s11277-020-07965-0.

    Article  Google Scholar 

  73. Kao, Y. S., Nawata, K., & Huang, C. Y. (2019). An exploration and confirmation of the factors influencing adoption of IoT-based wearable fitness trackers. International Journal of Environmental Research and Public Health, 16, 31. https://doi.org/10.3390/ijerph16183227.

    Article  Google Scholar 

  74. Montori, F., Bedogni, L., Di Felice, M., & Bononi, L. (2018). Machine-to-machine wireless communication technologies for the Internet of Things: Taxonomy, comparison and open issues. Pervasive Mobile Comput, 50, 56–81. https://doi.org/10.1016/j.pmcj.2018.08.002.

    Article  Google Scholar 

  75. Skocir, P., Kusek, M., & Jezic, G. (2017). Energy-efficient task allocation for service provisioning in machine-to-machine systems. Concurr Comput Exp, 29, 21. https://doi.org/10.1002/cpe.4269.

    Article  Google Scholar 

  76. Jiang, Y. P., Chen, C. L. P., & Duan, J. W. (2016). A new practice-driven approach to develop software in a cyber-physical system environment. Enterp Inf Syst, 10, 211–227. https://doi.org/10.1080/17517575.2014.939107.

    Article  Google Scholar 

  77. Capozucca, A., & Guelfi, N. (2010). Modelling dependable collaborative time-constrained business processes. Enterp Inf Syst, 4, 153–214. https://doi.org/10.1080/17517571003753266.

    Article  Google Scholar 

  78. Hu, S. S., Tang, C. C., Liu, F., & Wang, X. J. (2016). A distributed and efficient system architecture for smart home. Int J Sens Networks, 20, 119–130. https://doi.org/10.1504/ijsnet.2016.074701.

    Article  Google Scholar 

  79. Gowrishankar S, Madhu N, Basavaraju TG (2015) Role of BLE in proximity based automation of IoT: a practical approach. In: 2015 IEEE recent advances in intelligent computational systems (RAICS). IEEE, pp 400–405

  80. Perumal, T., Ramli, A. R., & Leong, C. Y. (2011). Interoperability framework for smart home systems. IEEE Transactions on Consumer Electronics, 57, 1607–1611.

    Article  Google Scholar 

  81. Krishna MB, Verma A (2016) A framework of smart homes connected devices using internet of things. In: 2016 2nd international conference on contemporary computing and informatics (IC3I). IEEE, pp 810–815

  82. Kim, J. E., Barth, T., Boulos, G., Yackovich, J., Beckel, C., & Mosse, D. (2017). Seamless integration of heterogeneous devices and access control in smart homes and its evaluation. Intell Build Int, 9, 23–39. https://doi.org/10.1080/17508975.2015.1018116.

    Article  Google Scholar 

  83. Jara, A. J., Zamora-Izquierdo, M. A., & Skarmeta, A. F. (2013). Interconnection framework for mHealth and remote monitoring based on the internet of things. IEEE Journal on Selected Areas in Communications, 31, 47–65. https://doi.org/10.1109/jsac.2013.Sup.0513005.

    Article  Google Scholar 

  84. Pham-Huu D-N, Nguyen V-H, Trinh V-A, Bui V-H, Pham H-A (2015) Towards an open framework for home automation development. In: 2015 international conference on advanced computing and applications (ACOMP). IEEE, pp 75–81

  85. Iqbal, A., Ullah, F., Anwar, H., Kwak, K. S., Imran, M., Jamal, W., & Rahman, A. U. (2018). Interoperable Internet-of-Things platform for smart home system using Web-of-Objects and cloud. Sustain Chem Pharm, 38, 636–646. https://doi.org/10.1016/j.scs.2018.01.044.

    Article  Google Scholar 

  86. Gambi, E., Montanini, L., Pigini, D., Ciattaglia, G., & Spinsante, S. (2018). A home automation architecture based on LoRa technology and Message Queue Telemetry Transfer protocol. Int J Distrib Sens Networks, 14, 12. https://doi.org/10.1177/1550147718806837.

    Article  Google Scholar 

  87. Ande, R., Adebisi, B., Hammoudeh, M., & Saleem, J. (2020). Internet of Things: Evolution and technologies from a security perspective. Sustainable Chemistry and Pharmacy, 54, 101728. https://doi.org/10.1016/j.scs.2019.101728.

    Article  Google Scholar 

  88. Perera, C., Ranjan, R., Wang, L., Khan, S. U., & Zomaya, A. Y. (2015). Big data privacy in the internet of things era. IT Prof, 17, 32–39.

    Article  Google Scholar 

  89. Singh, S., Sharma, P. K., & Park, J. H. (2017). SH-SecNet: an enhanced secure network architecture for the diagnosis of security threats in a smart home. Sustainability, 9, 19. https://doi.org/10.3390/su9040513.

    Article  Google Scholar 

  90. Subahi, A., & Theodorakopoulos, G. (2019). Detecting IoT user behavior and sensitive information in encrypted IoT-app traffic. Sensors, 19, 28. https://doi.org/10.3390/s19214777.

    Article  Google Scholar 

  91. Serror M, Henze M, Hack S, Schuba M, Wehrle K (2018) Towards in-network security for smart homes. In: Proceedings of the 13th international conference on availability, reliability and security. pp 1–8

  92. OConnor TJ, Mohamed R, Miettinen M, Enck W, Reaves B, Sadeghi A-R (2019) HomeSnitch: behavior transparency and control for smart home IoT devices. In: Proceedings of the 12th conference on security and privacy in wireless and mobile networks, pp 128–138

  93. Anthi, E., Williams, L., Slowinska, M., Theodorakopoulos, G., & Burnap, P. (2019). A supervised intrusion detection system for smart home IoT devices. IEEE Internet of Things Journal, 6, 9042–9053. https://doi.org/10.1109/jiot.2019.2926365.

    Article  Google Scholar 

  94. Nobakht M, Sivaraman V, Boreli R (2016) A host-based intrusion detection and mitigation framework for smart home IoT using OpenFlow. In: 2016 11th international conference on availability, reliability and security (ARES). IEEE, pp 147–156

  95. Sairam, R., Bhunia, S. S., Thangavelu, V., & Gurusamy, M. (2019). NETRA: enhancing IoT security using NFV-based edge traffic analysis. IEEE Sensors Journal, 19, 4660–4671. https://doi.org/10.1109/jsen.2019.2900097.

    Article  Google Scholar 

  96. Banerjee, S., Odelu, V., Das, A. K., Srinivas, J., Kumar, N., Chattopadhyay, S., & Choo, K. K. R. (2019). A provably secure and lightweight anonymous user authenticated session key exchange scheme for internet of things deployment. IEEE Int Things J, 6, 8739–8752. https://doi.org/10.1109/jiot.2019.2923373.

    Article  Google Scholar 

  97. Banerjee, S., Odelu, V., Das, A. K., Chattopadhyay, S., Rodrigues, J., & Park, Y. (2019). Physically secure lightweight anonymous user authentication protocol for internet of things using physically unclonable functions. IEEE Access, 7, 85627–85644. https://doi.org/10.1109/access.2019.2926578.

    Article  Google Scholar 

  98. Kumar, P., Braeken, A., Gurtov, A., Iinatti, J., & Ha, P. H. (2017). Anonymous secure framework in connected smart home environments. IEEE Transactions on Information Forensics and Security, 12, 968–979. https://doi.org/10.1109/tifs.2016.2647225.

    Article  Google Scholar 

  99. Yan, H. Y., Wang, Y., Jia, C. F., Li, J., Xiang, Y., & Pedrycz, W. (2019). IoT-FBAC: Function-based access control scheme using identity-based encryption in IoT. Futur Gener Comput Syst Int J Escience, 95, 344–353. https://doi.org/10.1016/j.future.2018.12.061.

    Article  Google Scholar 

  100. Fernández-Caramés, T. M., & Fraga-Lamas, P. (2018). A review on the use of blockchain for the internet of things. IEEE Access, 6, 32979–33001. https://doi.org/10.1109/ACCESS.2018.2842685.

    Article  Google Scholar 

  101. Han D, Kim H, Jang J (2017) Blockchain based smart door lock system. In: 2017 international conference on information and communication technology convergence (ICTC), pp 1165–1167

  102. Dorri A, Kanhere SS, Jurdak R, Gauravaram P (2017) Blockchain for IoT security and privacy: the case study of a smart home. In: 2017 IEEE international conference on pervasive computing and communications workshops (PerCom Workshops), pp 618–623

  103. Spathoulas, G., Giachoudis, N., Damiris, G. P., & Theodoridis, G. (2019). Collaborative blockchain-based detection of distributed denial of service attacks based on internet of things botnets. Futur Internet, 11, 24. https://doi.org/10.3390/fi11110226.

    Article  Google Scholar 

  104. Dorri, A., Kanhere, S. S., Jurdak, R., & Gauravaram, P. (2019). LSB: a lightweight scalable blockchain for IoT security and anonymity. J Parallel Distrib Comput, 134, 180–197. https://doi.org/10.1016/j.jpdc.2019.08.005.

    Article  Google Scholar 

  105. Sahni, Y., Cao, J. N., Zhang, S. G., & Yang, L. (2017). Edge mesh: a new paradigm to enable distributed intelligence in internet of things. IEEE Access, 5, 16441–16458. https://doi.org/10.1109/access.2017.2739804.

    Article  Google Scholar 

  106. Lin, L., Liao, X. F., Jin, H., & Li, P. (2019). Computation offloading toward edge computing. Proceedings of the IEEE, 107, 1584–1607. https://doi.org/10.1109/jproc.2019.2922285.

    Article  Google Scholar 

  107. Diaz, M., Martin, C., & Rubio, B. (2016). State-of-the-art, challenges, and open issues in the integration of Internet of things and cloud computing. J of Netw Comput Appl, 67, 99–117. https://doi.org/10.1016/j.jnca.2016.01.010.

    Article  Google Scholar 

  108. Ni, J. B., Zhang, K., Lin, X. D., & Shen, X. M. (2018). Securing fog computing for internet of things applications: challenges and solutions. IEEE Commun Surv Tutorials, 20, 601–628. https://doi.org/10.1109/comst.2017.2762345.

    Article  Google Scholar 

  109. Yassine, A., Singh, S., Hossain, M. S., & Muhammad, G. (2019). IoT big data analytics for smart homes with fog and cloud computing. Futur Gener Comput Syst Int J Escience, 91, 563–573. https://doi.org/10.1016/j.future.2018.08.040.

    Article  Google Scholar 

  110. Dehury, C. K., & Sahoo, P. K. (2016). Design and implementation of a novel service management framework for IoT devices in cloud. Journal of Systems and Software, 119, 149–161. https://doi.org/10.1016/j.jss.2016.06.059.

    Article  Google Scholar 

  111. Ganz, F., Puschmann, D., Barnaghi, P., & Carrez, F. (2015). A practical evaluation of information processing and abstraction techniques for the internet of things. IEEE Int Things J, 2, 340–354. https://doi.org/10.1109/jiot.2015.2411227.

    Article  Google Scholar 

  112. Bulling, A., Blanke, U., & Schiele, B. (2014). A tutorial on human activity recognition using body-worn inertial sensors. ACM Computing Surveys, 46, 1–33.

    Article  Google Scholar 

  113. Nweke, H. F., Teh, Y. W., Al-Garadi, M. A., & Alo, U. R. (2018). Deep learning algorithms for human activity recognition using mobile and wearable sensor networks: State of the art and research challenges. Expert Systems with Applications, 105, 233–261. https://doi.org/10.1016/j.eswa.2018.03.056.

    Article  Google Scholar 

  114. Das, S. K., Cook, D. J., Bhattacharya, A., Heierman, E. O., & Lin, T. Y. (2002). The role of prediction algorithms in the MavHome smart home architecture. IEEE Wireless Communications, 9, 77–84. https://doi.org/10.1109/mwc.2002.1160085.

    Article  Google Scholar 

  115. Doctor, F., Hagras, H., & Callaghan, V. (2004). A fuzzy embedded agent-based approach for realizing ambient intelligence in intelligent inhabited environments. IEEE Trans Syst MAN Cybern Part A Syst Humans, 35, 55–65.

    Article  Google Scholar 

  116. Zhang, Y., Tian, G. H., Zhang, S. Y., & Li, C. C. (2020). A knowledge-based approach for multiagent collaboration in smart home: from activity recognition to guidance service. IEEE Transactions on Instrumentation and Measurement, 69, 317–329. https://doi.org/10.1109/tim.2019.2895931.

    Article  Google Scholar 

  117. Ni, Q., Hernando, A. B. G., & de la Cruz, I. P. (2015). The elderly’s independent living in smart homes: a characterization of activities and sensing infrastructure survey to facilitate services development. Sensors, 15, 11312–11362. https://doi.org/10.3390/s150511312.

    Article  Google Scholar 

  118. Schweizer D, Zehnder M, Wache H, Witschel H-F, Zanatta D, Rodriguez M (2015) Using consumer behavior data to reduce energy consumption in smart homes: applying machine learning to save energy without lowering comfort of inhabitants. In: 2015 IEEE 14th international conference on machine learning and applications (ICMLA). IEEE, pp 1123–1129

  119. Kamal, S., Jalal, A., & Kim, D. (2016). Depth images-based human detection, tracking and activity recognition using spatiotemporal features and modified HMM. J Electr Eng Technol, 11, 1857–1862. https://doi.org/10.5370/jeet.2016.11.6.1857.

    Article  Google Scholar 

  120. Sasakawa, D., Honma, N., Nakayama, T., & Iizuka, S. (2018). Human identification using MIMO array. IEEE Sensors Journal, 18, 3183–3189. https://doi.org/10.1109/jsen.2018.2803157.

    Article  Google Scholar 

  121. Yu, L., Xie, W., Xie, D., Zou, Y., Zhang, D., Zhixin, S., Zhang, L., Zhang, Y., & Jiang, T. (2019). Deep reinforcement learning for smart home energy management. IEEE Internet of Things Journal. https://doi.org/10.1109/JIOT.2019.2957289.

    Article  Google Scholar 

  122. Tsirmpas, C., Anastasiou, A., Bountris, P., & Koutsouris, D. (2015). A new method for profile generation in an internet of things environment: an application in ambient-assisted living. IEEE Internet of Things Journal, 2, 471–478. https://doi.org/10.1109/jiot.2015.2428307.

    Article  Google Scholar 

  123. Hassan, M. M., Uddin, M. Z., Mohamed, A., & Almogren, A. (2018). A robust human activity recognition system using smartphone sensors and deep learning. Futur Gener Comput Syst Int J Escience, 81, 307–313. https://doi.org/10.1016/j.future.2017.11.029.

    Article  Google Scholar 

  124. Ye, J. A., & Dobson, S. (2010). Exploring semantics in activity recognition using context lattices. J Ambient Intell Smart Environ, 2, 389–407. https://doi.org/10.3233/ais-2009-0082.

    Article  Google Scholar 

  125. Byrne, C. A., Collier, R., & O’Hare, G. M. P. (2018). A review and classification of assisted living systems. Inf Int Interdiscip J, 9, 24. https://doi.org/10.3390/info9070182.

    Article  Google Scholar 

  126. Marques, G., Pitarma, R., Garcia, N. M., & Pombo, N. (2019). Internet of things architectures, technologies, applications, challenges, and future directions for enhanced living environments and healthcare systems: a review. Electronics, 8, 27. https://doi.org/10.3390/electronics8101081.

    Article  Google Scholar 

  127. Konig, A., & Thongpull, K. (2015). Lab-on-spoon—a 3-D integrated hand-held multi-sensor system for low-cost food quality, safety, and processing monitoring in assisted-living systems. J Sensors Sens Syst, 4, 63–75. https://doi.org/10.5194/jsss-4-63-2015.

    Article  Google Scholar 

  128. Shareef, H., Ahmed, M. S., Mohamed, A., & Al Hassan, E. (2018). Review on home energy management system considering demand responses, smart technologies, and intelligent controller. IEEE Access, 6, 24498–24509. https://doi.org/10.1109/ACCESS.2018.2831917.

    Article  Google Scholar 

  129. Liu, X., Ivanescu, L., Kang, R., & Maier, M. (2012). Real-time household load priority scheduling algorithm based on prediction of renewable source availability. IEEE Transactions on Consumer Electronics, 58, 318–326. https://doi.org/10.1109/TCE.2012.6227429.

    Article  Google Scholar 

  130. Paredes-Valverde, M. A., Alor-Hernandez, G., Garcia-Alcaraz, J. L., Salas-Zarate, M. D., Colombo-Mendoza, L. O., & Sanchez-Cervantes, J. L. (2020). IntelliHome: an internet of things-based system for electrical energy saving in smart home environment. Computational Intelligence. https://doi.org/10.1111/coin.12252.

    Article  Google Scholar 

  131. Marques, G., & Pitarma, R. (2016). An indoor monitoring system for ambient assisted living based on internet of things architecture. International Journal of Environmental Research and Public Health, 13, 14. https://doi.org/10.3390/ijerph13111152.

    Article  Google Scholar 

  132. Marques, G., & Pitarma, R. (2019). A cost-effective air quality supervision solution for enhanced living environments through the internet of things. Electronics, 8, 16. https://doi.org/10.3390/electronics8020170.

    Article  Google Scholar 

  133. Marques, G., & Pitarma, R. (2019). mHealth: indoor environmental quality measuring system for enhanced health and well-being based on internet of things. Journal of Sensor and Actuator Networks, 8, 20. https://doi.org/10.3390/jsan8030043.

    Article  Google Scholar 

  134. Marques, G., Pires, I. M., Miranda, N., & Pitarma, R. (2019). Air quality monitoring using assistive robots for ambient assisted living and enhanced living environments through internet of things. Electronics, 8, 18. https://doi.org/10.3390/electronics8121375.

    Article  Google Scholar 

  135. Fallahzadeh, R., Ghasemzadeh, H., & Shahrokni, A. (2018). Electronic assessment of physical decline in geriatric cancer patients. Current Oncology Reports, 20, 11. https://doi.org/10.1007/s11912-018-0670-5.

    Article  Google Scholar 

  136. Ahanger, T. A., Tariq, U., Ibrahim, A., Ullah, I., & Bouterra, Y. (2020). Iot-inspired framework of intruder detection for smart home security systems. Electron, 9, 1–17. https://doi.org/10.3390/electronics9091361.

    Article  Google Scholar 

  137. Khan, M., Silva, B. N., & Han, K. J. (2016). Internet of things based energy aware smart home control system. IEEE Access, 4, 7556–7566. https://doi.org/10.1109/access.2016.2621752.

    Article  Google Scholar 

  138. Pars, A., Najafabadi, T. A., & Salmasi, F. R. (2019). A hierarchical smart home control system for improving load shedding and energy consumption: design and implementation. IEEE Sensors Journal, 19, 3383–3390. https://doi.org/10.1109/jsen.2018.2880867.

    Article  Google Scholar 

  139. Tastan, M. (2019). Internet of things based smart energy management for smart home. KSII Trans Int Inf Syst, 13, 2781–2798. https://doi.org/10.3837/tiis.2019.06.001.

    Article  Google Scholar 

  140. Piti, A., Verticale, G., Rottondi, C., Capone, A., & Lo Schiavo, L. (2017). The role of smart meters in enabling real-time energy services for households: the Italian case. Energies, 10, 25. https://doi.org/10.3390/en10020199.

    Article  Google Scholar 

  141. Ghiani, G., Manca, M., Paterno, F., & Santoro, C. (2017). Personalization of context-dependent applications through trigger-action rules. ACM Trans Comput Interact, 24, 33. https://doi.org/10.1145/3057861.

    Article  Google Scholar 

  142. Fogli, D., Peroni, M., & Stefini, C. (2017). ImAtHome: making trigger-action programming easy and fun. Journal of Visual Languages and Computing, 42, 60–75. https://doi.org/10.1016/j.jvlc.2017.08.003.

    Article  Google Scholar 

  143. Hafidh, B., Al Osman, H., Arteaga-Falconi, J. S., Dong, H., & El Saddik, A. (2017). SITE: the simple internet of things enabler for smart homes. Ieee Access, 5, 2034–2049. https://doi.org/10.1109/access.2017.2653079.

    Article  Google Scholar 

  144. Cabitza, F., Fogli, D., Lanzilotti, R., & Piccinno, A. (2017). Rule-based tools for the configuration of ambient intelligence systems: a comparative user study. Multimed Tools Appl, 76, 5221–5241. https://doi.org/10.1007/s11042-016-3511-2.

    Article  Google Scholar 

  145. Shuhaiber, A., & Mashal, I. (2019). Understanding users’ acceptance of smart homes. Technology in Society, 58, 9. https://doi.org/10.1016/j.techsoc.2019.01.003.

    Article  Google Scholar 

  146. Nikou, S. (2019). Factors driving the adoption of smart home technology: An empirical assessment. Telemat Inform, 45, 12. https://doi.org/10.1016/j.tele.2019.101283.

    Article  Google Scholar 

  147. Pal, D., Funilkul, S., Charoenkitkarn, N., & Kanthamanon, P. (2018). Internet-of-things and smart homes for elderly healthcare: an end user perspective. IEEE Access, 6, 10483–10496. https://doi.org/10.1109/access.2018.2808472.

    Article  Google Scholar 

  148. Dang, L. M., Piran, M. J., Han, D., Min, K., & Moon, H. (2019). A survey on internet of things and cloud computing for healthcare. Electronics, 8, 49. https://doi.org/10.3390/electronics8070768.

    Article  Google Scholar 

  149. Yang, G., Xie, L., Mantysalo, M., Zhou, X. L., Pang, Z. B., Xu, L. D., Kao-Walter, S., Chen, Q., & Zheng, L. R. (2014). A health-IoT platform based on the integration of intelligent packaging, unobtrusive bio-sensor, and intelligent medicine box. IEEE Trans Ind Informatics, 10, 2180–2191. https://doi.org/10.1109/tii.2014.2307795.

    Article  Google Scholar 

  150. Lee, Y. T., Hsiao, W. H., Lin, Y. S., & Chou, S. C. T. (2017). Privacy-preserving data analytics in cloud-based smart home with community hierarchy. IEEE Transactions on Consumer Electronics, 63, 200–207. https://doi.org/10.1109/tce.2017.014777.

    Article  Google Scholar 

  151. Henze, M., Hermerschmidt, L., Kerpen, D., Haussling, R., Rumpe, B., & Wehrle, K. (2016). A comprehensive approach to privacy in the cloud-based Internet of Things. Futur Gener Comput Syst Int J Escience, 56, 701–718. https://doi.org/10.1016/j.future.2015.09.016.

    Article  Google Scholar 

  152. Qolomany, B., Al-Fuqaha, A., Gupta, A., Benhaddou, D., Alwajidi, S., Qadir, J., & Fong, A. C. (2019). Leveraging machine learning and big data for smart buildings: a comprehensive survey. IEEE Access, 7, 90316–90356. https://doi.org/10.1109/access.2019.2926642.

    Article  Google Scholar 

  153. Pekar, A., Mocnej, J., Seah, W. K. G., & Zolotova, I. (2020). Application domain-based overview of IoT network traffic characteristics. ACM Computing Surveys. https://doi.org/10.1145/3399669.

    Article  Google Scholar 

  154. Masek, P., Hosek, J., Zeman, K., Stusek, M., Kovac, D., Cika, P., Masek, J., Andreev, S., & Kropfl, F. (2016). Implementation of true IoT vision: survey on enabling protocols and hands-on experience. International Journal of Distributed Sensor Networks. https://doi.org/10.1155/2016/8160282.

    Article  Google Scholar 

  155. Liu, Y., Liu, X., Liu, A., Xiong, N. N., & Liu, F. (2019). A trust computing-based security routing scheme for cyber physical systems. ACM Trans Intell Syst Technol. https://doi.org/10.1145/3321694.

    Article  Google Scholar 

  156. Novo, O. (2018). Blockchain meets IoT: an architecture for scalable access management in IoT. IEEE Int Things J, 5, 1184–1195. https://doi.org/10.1109/JIOT.2018.2812239.

    Article  Google Scholar 

  157. Pal, S., Rabehaja, T., Hitchens, M., Varadharajan, V., & Hill, A. (2020). On the design of a flexible delegation model for the internet of things using blockchain. IEEE Trans Ind Informatics, 16, 3521–3530. https://doi.org/10.1109/TII.2019.2925898.

    Article  Google Scholar 

  158. Akpakwu, G. A., Silva, B. J., Hancke, G. P., & Abu-Mahfouz, A. M. (2018). A survey on 5G networks for the internet of things: communication technologies and challenges. IEEE Access, 6, 3619–3647. https://doi.org/10.1109/ACCESS.2017.2779844.

    Article  Google Scholar 

  159. Dorri A, Kanhere SS, Jurdak R (2017) Towards an optimized blockchain for IoT. In: Proceedings of the second international conference on internet-of-things design and implementation. Association for Computing Machinery, New York, NY, USA, pp 173–178

Download references

Funding

This study was supported by grants from the National Natural Science Foundation of China (NSFC) (71802126), and a grant from the Shanghai Pujiang Program (18PJC060).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Sun.

Ethics declarations

Conflicts of interest

Not applicable.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Y., Li, S. A systematic review of the research framework and evolution of smart homes based on the internet of things. Telecommun Syst 77, 597–623 (2021). https://doi.org/10.1007/s11235-021-00787-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-021-00787-w

Keywords

Navigation