Skip to main content

Advertisement

Log in

Integration of hybrid communication and remote sensing for ITS application

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

Intelligent transportation system is a prominent technology solution for the vehicle manufacturers in this present scenario. The manufacturers are trying to deploy an advanced system for automation through sensing. Various technologies are being used to communicate with other near-by vehicle and to sense their perspective on the road. The important problem is to share the radar and communication information with other vehicles without any time delay. The vehicles uses a different hardware system for establishing radar sensing and communication concurrently, which increases the cost and bandwidth requirement of the overall system. Instead of using multiple system and hardware separately for communication and remote sensing, a single hybrid system might be a cost effective solution which will serve both communication and remote sensing requirements. This work proposes a concept for integrating radar sensing and hybrid communication system (IRSHCS) with multiple input multiple output (MIMO) orthogonal frequency division multiplexing (OFDM) in a single hardware known as software defined radio. It serves simultaneous remote sensing and communication to the vehicle user without delay with the dedicated short range communication system and worldwide interoperability for microwave access. Moreover, an optimization problem is formulated to improve the performance of IRSHCS, which focuses on sharing both the radar and communication between the vehicles without any time delay by satisfying the radar and communication system requirements with suitable parameters. The whale optimization algorithm generates an optimal solution to solve the limitations of the hybrid system by choosing maximum channel capacity as its objective function. Experimental results are evaluated to demonstrate the IRSHCS MIMO OFDM system provide better performance as compared to the conventional approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Zhao, J., & Cao, G. (2008). VADD: Vehicle-assisted data delivery in vehicular ad hoc networks. IEEE Transactions on Vehicular Technology,57(3), 1910–1922.

    Article  Google Scholar 

  2. Dimitrakopoulos, G., & Demestichas, P. (2010). Intelligent transportation systems. IEEE Vehicular Technology Magazine,5(1), 77–84.

    Article  Google Scholar 

  3. Wang, F. Y. (2010). Parallel control and management for intelligent transportation systems: Concepts, architectures, and applications. IEEE Transactions on Intelligent Transportation Systems,11(3), 630–638.

    Article  Google Scholar 

  4. Li, L., Li, X., Li, Z., Zeng, D. D., & Scherer, W. T. (2010). A bibliographic analysis of the IEEE Transactions on Intelligent Transportation Systems literature. IEEE Transactions on Intelligent Transportation Systems,11(2), 251–255.

    Article  Google Scholar 

  5. Liu, Y., Dion, F., & Biswas, S. (2005). Dedicated short-range wireless communications for intelligent transportation system applications: State of the art. Transportation Research Record, Journal of the Transportation Research Board,1(1910), 29–37.

    Article  Google Scholar 

  6. Bilstrup, K., Uhlemann, E., Strom, E. G., & Bilstrup, U. (2008). Evaluation of the IEEE 802.11p MAC method for vehicle-to-vehicle communication. In Vehicular technology conference, VTC 2008-fall. IEEE 68th 2008 September 21 (pp. 1–5). New York: IEEE.

  7. Martinez, F. J., Toh, C. K., Cano, J. C., Calafate, C. T., & Manzoni, P. (2010). Emergency services in future intelligent transportation systems based on vehicular communication networks. IEEE Intelligent Transportation Systems Magazine,2(2), 6–20.

    Article  Google Scholar 

  8. Rengaraju, P., & Lung, C. H. (October 2016). Network architecture and QoS study on software defined LTE vehicular ad hoc networks. In Communication and electronics systems (ICCES), international conference (pp. 1–7). New York: IEEE.

  9. Xiong, X., Xiang, W., Zheng, K., Shen, H., & Wei, X. (2015). An open source SDR-based NOMA system for 5G networks. IEEE Wireless Communications,22(6), 24–32.

    Article  Google Scholar 

  10. Baldini, G., Sturman, T., Biswas, A. R., Leschhorn, R., Godor, G., & Street, M. (2012). Security aspects in software defined radio and cognitive radio networks: A survey and a way ahead. IEEE Communications Surveys and Tutorials,14(2), 355–379.

    Article  Google Scholar 

  11. Ulversoy, T. (2010). Software defined radio: Challenges and opportunities. IEEE Communications Surveys and Tutorials,12(4), 531–550.

    Article  Google Scholar 

  12. Dhar, S., Kandar, D., Bose, T., & Bera, R. (2009). Smart antenna based broadband communication in intelligent transportation system. Preprint arXiv:0903.3163.

  13. Arslan, S., & Saritas, M. (2017). The effects of OFDM design parameters on the V2X communication performance: A survey. Vehicular Communications,7, 1–16.

    Article  Google Scholar 

  14. Yang, K., Ou, S., Chen, H. H., & He, J. (2007). A multihop peer-communication protocol with fairness guarantee for IEEE 802.16-based vehicular networks. IEEE Transactions on Vehicular Technology,56(6), 3358–3370.

    Article  Google Scholar 

  15. Kenney, J. B. (2011). Dedicated short-range communications (DSRC) standards in the United States. Proceedings of the IEEE,99(7), 1162–1182.

    Article  Google Scholar 

  16. Martelli, F., Renda, M. E., Resta, G., & Santi, P. (2012). A measurement-based study of beaconing performance in IEEE 802.11p vehicular networks. In INFOCOM, 2012 proceedings IEEE (pp. 1503–1511).

  17. LeBrun, J., Chuah, C. N., Ghosal, D., & Zhang, M. (2005). Knowledge-based opportunistic forwarding in vehicular wireless ad hoc networks. In Vehicular technology conference, 2005. VTC 2005-Spring. 2005 IEEE (Vol. 4, p. 2289–2293).

  18. Kandar, D., Subathradevi, C., Porkodi, S., Princy, C. A., Nithya, M., & Bhuvaneswari, E. (2013). Convergence of DSRC and WiMAX technology for intelligent transportation system. Journal of Advances in Computer Networks,1(2), 61–72.

    Google Scholar 

  19. Doyle, N. C., Jaber, N., & Tepe, K. E. (2011). Improvement in vehicular networking efficiency using a new combined WiMAX and DSRC system design. In Communications, computers and signal processing (PacRim) (pp. 42–47).

  20. Jain, R., & So-In, C. (2008). System-level modeling of IEEE 802.16e mobile WiMAX networks: Key issues. IEEE Wireless Communications,15(5), 73–79.

    Article  Google Scholar 

  21. Wu, C., Yoshinaga, T., Ji, Y., Murase, T., & Zhang, Y. (2017). A reinforcement learning-based data storage scheme for vehicular ad hoc networks. IEEE Transactions on Vehicular Technology,66(7), 6336–6348.

    Article  Google Scholar 

  22. Huang, X., Zhao, D., & Peng, H. (2017). Empirical study of DSRC performance based on safety pilot model deployment data. IEEE Transactions on Intelligent Transportation Systems,18, 2619–2628.

    Article  Google Scholar 

  23. Vegni, A. M., & Little, T. D. (2011). Hybrid vehicular communications based on V2V–V2I protocol switching. International Journal of Vehicle Information and Communication Systems,2(3–4), 213–231.

    Article  Google Scholar 

  24. Ali, M. F., Harum, N. H., & Abu, N. A. (2017). An intelligent radio access technology selection for vehicular communications. International Journal of Applied Engineering Research,12(14), 4365–4371.

    Google Scholar 

  25. Kumari, P., Gonzalez-Prelcic, N., & Heath, R. W. (2015). Investigating the IEEE 802.11ad standard for millimeter wave automotive radar. In Vehicular technology conference (VTC fall) (pp. 1–5).

  26. Sit, Y. L., Nuss, B., & Zwick, T. (2018). On mutual interference cancellation in a MIMO OFDM multiuser radar-communication network. IEEE Transactions on Vehicular Technology,67(4), 3339–3348.

    Article  Google Scholar 

  27. Kumari, P., Choi, J., González-Prelcic, N., & Heath, R. W. (2018). IEEE 802.11ad-based radar: An approach to joint vehicular communication-radar system. IEEE Transactions on Vehicular Technology,67(4), 3012–3027.

    Article  Google Scholar 

  28. Cohen, D., Mishra, K. V., & Eldar, Y. C. (2017). Spectrum sharing radar: Coexistence via Xampling. IEEE Transactions on Aerospace and Electronic Systems,54(3), 1279–1296.

    Article  Google Scholar 

  29. Aljarah, I., Faris, H., & Mirjalili, S. (2018). Optimizing connection weights in neural networks using the whale optimization algorithm. Soft Computing,22(1), 1–5.

    Article  Google Scholar 

  30. Aquino-Santos, R., Villaseñor-González, L. A., Rangel-Licea, V., Edwards-Block, A., Galaviz-Mosqueda, A., & Buenrostro, L. M. O. (2011). Inter-vehicular communication using IEEE 802.16e technology. Mechatronics Series I-Intelligent Transportation Vehicles,1, 67.

    Google Scholar 

  31. Shelly, S., & Babu, A. V. (2015). Prediction of link residual lifetime using Kalman filter in vehicular ad hoc networks. In Intelligent computational systems (RAICS) (pp. 268–273).

  32. Guchhait, A. (2018). A hybrid V2V system for collision-free high-speed internet access in intelligent transportation system. Transactions on Emerging Telecommunications Technologies,29, e3282.

    Article  Google Scholar 

  33. Bazzi, A., Masini, B., Zanella, A., & Thibault, I. (2017). On the performance of IEEE 802.11p and LTE–V2V for the cooperative awareness of connected vehicle. IEEE Transactions on Vehicular Technology,1(99), 1.

    Google Scholar 

  34. Al-Tahrawi, M. A., Ismail, M., Nordin, R., & Yuwono, T. (2016). Performance of AODV and OLSR routing protocol in a hybrid sensor and vehicular network 802.11p. In Wireless and telematics (ICWT), 2016 2nd international conference (pp. 140–145).

  35. Zhang, X., Shang, Y., Li, X., & Fang, J. (2016). Research on overlay D2D resource scheduling algorithms for V2V broadcast service. In Vehicular technology conference (VTC-fall) (Vol. 8(7), pp. 1–5).

  36. Taha, A., Alsaqour, R., Uddin, M., Abdelhaq, M., & Saba, T. (2017). Energy efficient multipath routing protocol for mobile ad-hoc network using the fitness function. IEEE Access,5, 10369–10381.

    Article  Google Scholar 

  37. Smail, O., Cousin, B., Mekki, R., & Mekkakia, Z. (2014). A multipath energy-conserving routing protocol for wireless ad hoc networks lifetime improvement. EURASIP Journal on Wireless Communications and Networking,2014(1), 139.

    Article  Google Scholar 

  38. Kulkarni, S. A., & Rao, G. R. (2013). Modeling security issues for multipath routing in vehicular networks for IEEE 802.11p. In Emerging trends in communication, control, signal processing and computing applications (C2SPCA), 2013 international conference (pp. 1–4).

  39. Togou, M. A., Hafid, A., & Khoukhi, L. (2016). SCRP: Stable CDS-based routing protocol for urban vehicular ad hoc networks. IEEE Transactions on Intelligent Transportation Systems,17(5), 1298–1307.

    Article  Google Scholar 

  40. Alsharif, N., Céspedes, S., & Shen, X. (2013) iCAR: Intersection-based connectivity aware routing in vehicular ad hoc networks. In Communications (ICC), 2013 IEEE international conference (pp. 1736–1741).

  41. Jerbi, M., Senouci, S. M., Meraihi, R., & Ghamri-Doudane, Y. (2007). An improved vehicular ad hoc routing protocol for city environments. In Communications, 2007. ICC’07. IEEE international conference (pp. 3972–3979).

  42. Karp, B., & Kung, H. T. (2000) GPSR: Greedy perimeter stateless routing for wireless networks. In Proceedings of the 6th annual international conference on mobile computing and networking (pp. 243–254).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arghya Guchhait.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guchhait, A., Maji, B. & Kandar, D. Integration of hybrid communication and remote sensing for ITS application. Telecommun Syst 74, 511–529 (2020). https://doi.org/10.1007/s11235-020-00664-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-020-00664-y

Keywords

Navigation