Nature inspired quantile estimates of the Nakagami distribution


Nakagami-m distribution is utilized heavily in modelling multipath interferences in wireless networks. However, the closed form of the quantile function of the distribution is not available. The unavailability of the closed form is a result of the intractable nature of the cumulative distribution function (CDF). Hence, the inversion method cannot be used to recover the quantile function (QF) from the CDF of Nakagami-m distribution. Approximation is often the only choice available and numerical optimization method is one of the new forms of quantile approximation. This work proposed a new quantile model which is used to fit the machine values of QF of some selected parameters of the distribution. Differential evolution was used to minimize the error that resulted from the curve fitting. The resulting model is an appreciably improvement over some existing ones found in literature, using the root mean square error as the performance metric. In addition, the precision of the model increases as the shape parameter of the distribution decreases and the model was able to capture the extreme tails of the distribution better than the other previous published results. Thereafter, the usefulness of the model was seen in random number generation and Monte Carlo simulation. Anderson–Darling test showed that the simulated random variables are not from the normal distribution, despite the huge sample size. Different aspects of wireless communications will benefit from the applications of this work.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30


  1. 1.

    Parzen, E. (2004). Quantile probability and statistical data modeling. Statistical Science, 19(4), 652–662.

    Google Scholar 

  2. 2.

    Gilchrist, W. G. (2007). Modeling and fitting quantile distributions and regressions. American Journal of Mathematical and Management Sciences, 27(3–4), 401–439.

    Google Scholar 

  3. 3.

    Kong, L., & Mizera, I. (2012). Quantile tomography: Using quantiles with multivariate data. Statistica Sinica, 22(4), 1589–1610.

    Google Scholar 

  4. 4.

    Koza, J. R. (1992). Genetic programming: On the programming of computers by means of natural evolution. Cambridge: MIT Press.

    Google Scholar 

  5. 5.

    Onwubolu, G. C., & Babu, B. V. (2014). New optimization techniques in engineering. Berlin: Springer. ISBN 978-3-540-20167-0.

    Google Scholar 

  6. 6.

    Fogel, D. B. (1995). Evolutionary computation: Toward a new philosophy of machine intelligence. Piscataway, NJ: IEEE Press.

    Google Scholar 

  7. 7.

    Okagbue, H. I., Adamu, M. O., & Anake, T. A. (2018). Ordinary differential equations of probability functions of convoluted distributions. International Journal of Advanced and Applied Sciences, 5(10), 46–52.

    Google Scholar 

  8. 8.

    Okagbue, H. I., Adamu, M. O., & Anake, T. A. (2019). Quantile mechanics: Issues arising from critical review. International Journal of Advanced and Applied Sciences, 6(1), 9–23.

    Article  Google Scholar 

  9. 9.

    Okagbue, H. I., Adamu, M. O., & Anake, T. A. (2018). Closed form expressions for the quantile function of the Erlang distribution used in engineering models. Wireless Personal Communications, 104(4), 1393–1408.

    Article  Google Scholar 

  10. 10.

    Nair, N. U., & Sankaran, P. G. (2009). Quantile based reliability analysis. Communications in Statistics Theory and Methods, 38, 222–232.

    Google Scholar 

  11. 11.

    Diaz Ochoa, J. G. (2018). Elastic multi-scale mechanisms: Computation and biological evolution. Journal of Molecular Evolution, 86(1), 47–57.

    Google Scholar 

  12. 12.

    Queiroz, W. J. L., Almeida, D. B. T., Madeiro, F., Cardoso, J. V. M., Pereira, D. F. L., & Alencar, M. S. (2018). New closed-form expressions for SNR estimates of Nakagami fading channels by the method of moments. Telecommunication Systems, 69(3), 321–333.

    Google Scholar 

  13. 13.

    Hasan, M. I., & Kumar, S. (2017). Spectral efficiency of dual diversity selection combining schemes under correlated Nakagami-0.5 fading with unequal average received SNR. Telecommunication Systems, 64(1), 3–16.

    Google Scholar 

  14. 14.

    Tuan, V. P., & Kong, H. Y. (2018). Exploiting cooperative relays to enhance the performance of energy-harvesting systems over Nakagami-m fading channels. Telecommunication Systems, 69(4), 477–487.

    Google Scholar 

  15. 15.

    Nguyen-Huu, P., & Ho-Van, K. (2018). Bidirectional relaying with energy harvesting capable relay: outage analysis for Nakagami-m fading. Telecommunication Systems, 69(3), 335–347.

    Google Scholar 

  16. 16.

    Queiroz, W. J. L., Madeiro, F., Lopes, W. T. A., & Alencar, M. S. (2018). On the performance of M-QAM for Nakagami channels subject to gated noise. Telecommunication Systems, 68(1), 1–10.

    Google Scholar 

  17. 17.

    Badarneh, O. S., Almehmadi, F. S., & Aldalgamouni, T. (2018). On the application of the sum of generalized Gaussian random variables: Maximal ratio combining. Telecommunication Systems, 67(3), 415–422.

    Google Scholar 

  18. 18.

    Ben Halima, N., & Boujemâa, H. (2019). Round robin, distributed and centralized relay selection for cognitive radio networks in the presence of Nakagami fading channels. Telecommunication Systems, 70(3), 405–415.

    Google Scholar 

  19. 19.

    El-Bahaie, E. H., & Al-Hussaini, E. K. (2017). Novel results for the performance of single and double stages cognitive radio systems through Nakagami-m fading and log-normal shadowing. Telecommunication Systems, 65(4), 729–737.

    Google Scholar 

  20. 20.

    Dominic, S., & Jacob, L. (2018). Learning algorithms for joint resource block and power allocation in underlay D2D networks. Telecommunication Systems, 69(3), 285–301.

    Google Scholar 

  21. 21.

    El-Khamy, S., Moussa, K., & El-Sherif, A. (2017). A smart multi-user massive MIMO system for next G Wireless communications using evolutionary optimized antenna selection. Telecommunication Systems, 65(2), 309–317.

    Google Scholar 

  22. 22.

    Hung, H.-L. (2017). Application firefly algorithm for peak-to-average power ratio reduction in OFDM systems. Telecommunication Systems.

    Article  Google Scholar 

  23. 23.

    Namitha, A. S., & Sameer, S. M. (2016). A combined technique for carrier frequency offset estimation and peak-to-average power ratio reduction in OFDM systems using null subcarriers and Cuckoo search algorithm. Telecommunication Systems, 63(2), 275–285.

    Google Scholar 

  24. 24.

    Singh, S., & Sharma, R. M. (2018). HSCA: A novel harmony search based efficient clustering in heterogeneous WSNs. Telecommunication Systems, 67(4), 651–667.

    Google Scholar 

  25. 25.

    Sharma, G., & Kumar, A. (2018). Improved DV-Hop localization algorithm using teaching learning based optimization for wireless sensor networks. Telecommunication Systems, 67(2), 163–178.

    Google Scholar 

  26. 26.

    Singh, P., Khosla, A., Kumar, A., & Khosla, M. (2018). Computational intelligence based localization of moving target nodes using single anchor node in wireless sensor networks. Telecommunication Systems, 69(3), 397–411.

    Google Scholar 

  27. 27.

    Orakzai, F. A., Iqbal, M., Naeem, M., & Ahmad, A. (2018). Energy efficient joint radio resource management in D2D assisted cellular communication. Telecommunication Systems, 69(4), 505–517.

    Google Scholar 

  28. 28.

    Jha, S. K., & Eyong, E. M. (2018). An energy optimization in wireless sensor networks by using genetic algorithm. Telecommunication Systems, 67(1), 113–121.

    Google Scholar 

  29. 29.

    Mandloi, M., Hussain, M. A., & Bhatia, V. (2017). Adaptive multiple stage K-best successive interference cancellation algorithm for MIMO detection. Telecommunication Systems, 66(1), 1–16.

    Google Scholar 

  30. 30.

    Cao, B., Zhao, J., Yang, P., Lv, Z., Liu, X., Kang, X., et al. (2018). Distributed parallel cooperative coevolutionary multi-objective large-scale immune algorithm for deployment of wireless sensor networks. Future Generation Computer Systems, 82, 256–267.

    Google Scholar 

  31. 31.

    Huang, L., Liu, J., & Guo, L. (2018). A hybrid mutation artificial bee colony algorithm for spectrum sharing. International Journal of High Performance Computing and Networking, 12(3), 299–306.

    Google Scholar 

  32. 32.

    Sharma, G., & Kumar, A. (2018). Fuzzy logic based 3D localization in wireless sensor networks using invasive weed and bacterial foraging optimization. Telecommunication Systems, 67(2), 149–162.

    Google Scholar 

  33. 33.

    Hung, H.-L. (2017). Application firefly algorithm for peak-to-average power ratio reduction in OFDM systems. Telecommunication Systems, 65(1), 1–8.

    Google Scholar 

  34. 34.

    Pan, J.-S., Meng, Z., Chu, S.-C., & Xu, H.-R. (2017). Monkey King Evolution: An enhanced ebb-tide-fish algorithm for global optimization and its application in vehicle navigation under wireless sensor network environment. Telecommunication Systems, 65(3), 351–364.

    Google Scholar 

  35. 35.

    Meng, Z., Pan, J.-S., & Alelaiwi, A. (2016). A new meta-heuristic ebb-tide-fish-inspired algorithm for traffic navigation. Telecommunication Systems, 62(2), 403–415.

    Google Scholar 

  36. 36.

    Goudos, S. K., Deruyck, M., Plets, D., Martens, L., & Joseph, W. (2017). Optimization of power consumption in 4G LTE networks using a novel barebones self-adaptive differential evolution algorithm. Telecommunication Systems, 66(1), 109–120.

    Google Scholar 

  37. 37.

    Liu, H. (2019). SINR-based multi-channel power schedule under DoS attacks: A Stackelberg game approach with incomplete information. Automatica, 100, 274–280.

    Google Scholar 

  38. 38.

    Qin, M. & Zhu, R. (2018). A Monte Carlo localization method based on differential evolution optimization applied into economic forecasting in mobile wireless sensor networks. Eurasip Journal on Wireless Communications and Networking, 2018(1), Article number 32.

    Google Scholar 

  39. 39.

    Potthuri, S., Shankar, T., & Rajesh, A. (2018). Lifetime improvement in wireless sensor networks using hybrid differential evolution and simulated annealing (DESA). Ain Shams Engineering Journal, 9(4), 655–663.

    Google Scholar 

  40. 40.

    Cao, B., Kang, X., Zhao, J., Yang, P., Lv, Z. & Liu, X. (2018). Differential evolution-based 3-D directional wireless sensor network deployment optimization. IEEE Internet of Things Journal, 5(5), 3594–3605.

    Google Scholar 

  41. 41.

    Céspedes-Mota, A., Castañón, G., Martínez-Herrera, A. F., Cárdenas-Barrón, L. E., & Sarmiento, A. M. (2018). Differential evolution algorithm applied to wireless sensor distribution on different geometric shapes with area and energy optimization. Journal of Network and Computer Applications, 119, 14–23.

    Google Scholar 

  42. 42.

    Xu, Z., Gu, R., Huang, T., Xiang, H., Zhang, X., Qi, L. & Xu, X. (2018). An IoT-oriented offloading method with privacy preservation for cloudlet-enabled wireless metropolitan area networks. Sensors, 18(9), Article number 3030.

    Google Scholar 

  43. 43.

    Qin, N.-N., & Chen, J.-L. (2018). An area coverage algorithm for wireless sensor networks based on differential evolution. International Journal of Distributed Sensor Networks, 14(8), 833–835.

    Google Scholar 

  44. 44.

    Xu, Y., Ye, Y., Zhang, H., Zhang, W., & Lv, Y. (2018). A fast two-objective differential evolution for the two-objective coverage problem of WSNs. Memetic Computing.

    Article  Google Scholar 

  45. 45.

    Cui, L., Xu, C., Li, G., Ming, Z., Feng, Y., & Lu, N. (2018). A high accurate localization algorithm with DV-Hop and differential evolution for wireless sensor network. Applied Soft Computing Journal, 68, 39–52.

    Google Scholar 

  46. 46.

    Mahmoudzadeh, S., Powers, D. M. W., & Atyabi, A. (2018). UUV’s hierarchical DE-based motion planning in a semi dynamic underwater wireless sensor network. IEEE Transactions on Cybernetics.

    Article  Google Scholar 

  47. 47.

    Ayinde, B. O., & Hashim, H. A. (2018). Energy-efficient deployment of relay nodes in wireless sensor networks using evolutionary techniques. International Journal of Wireless Information Networks, 25(2), 157–172.

    Google Scholar 

  48. 48.

    Afzal, Z., Shah, P. A., Awan, K. M., & Zahoor-ur-Rehman, (2018). Optimum bandwidth allocation in wireless networks using differential evolution. Journal of Ambient Intelligence and Humanized Computing, 10, 1401–1412.

    Article  Google Scholar 

  49. 49.

    Céspedes-Mota, A., Castañón, G., Martínez-Herrera, A.F. & Cárdenas-Barrón, L.E. (2018). Multiobjective optimization for a wireless ad hoc sensor distribution on shaped-bounded areas. Mathematical Problems in Engineering, 2018, Article number 7873984.

    Google Scholar 

  50. 50.

    Chiu, C.-C., Lai, G.-D., & Cheng, Y.-T. (2018). Self-adaptive dynamic differential evolution applied to BER reduction with beamforming techniques for ultra wideband MU-MIMO systems. Progress In Electromagnetics Research C, 87, 187–197.

    Google Scholar 

  51. 51.

    Hao, X., Wang, L., Liu, J., Xie, L., & Zhang, W. (2018). Resource allocation optimization algorithm based on double populations differential evolution in WSN. Tongxin Xuebao/Journal on Communications, 39(4), 68–75.

    Google Scholar 

  52. 52.

    Zheng, S., Gao, S., Yin, Y., Luo, Q., Yang, X., Hu, W., Ren, X. & Qin, F. (2018). A broadband dual circularly polarized conical four-arm sinuous antenna. IEEE Transactions on Antennas and Propagation, 66(1), 71–80.

    Google Scholar 

  53. 53.

    Beaulieu, N. C., & Cheng, C. (2005). Efficient Nakagami-m fading channel simulation. IEEE Transactions on Vehicular Technology, 54(2), 413–424.

    Google Scholar 

  54. 54.

    Bilim, M., & Develi, I. (2015). A new Nakagami-m inverse CDF approximation based on the use of genetic algorithm. Wireless Personal Communications, 83(3), 2279–2287.

    Google Scholar 

  55. 55.

    Kabalci, Y. (2016). On the Nakagami-m inverse cumulative distribution function: Closed-form expression and its optimization by backtracking search optimization algorithm. Wireless Personal Communications, 91(1), 1–8.

    Google Scholar 

  56. 56.

    Kabalci, Y. (2018). An improved approximation for the Nakagami-m inverse CDF using artificial bee colony optimization. Wireless Networks, 24(2), 663–669.

    Google Scholar 

  57. 57.

    Storn, R., & Price, K. (1997). Differential evolution—A simple and efficient heuristic for global optimization over continuous spaces. Journal of Global Optimization, 11, 341–359.

    Google Scholar 

  58. 58.

    Storn, R. (1996). On the usage of differential evolution for function optimization. In Biennial conference of the North American fuzzy information processing society (NAFIPS) (pp. 519–523).

  59. 59.

    Sankaran, M. (1963). Approximations to the non-central chi-square distribution. Biometrika, 50(1/2), 199–204.

    Google Scholar 

Download references


The serene environment provided by Covenant University was one the variables that facilitated the conduct of this research.

Author information



Corresponding author

Correspondence to Hilary I. Okagbue.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Okagbue, H.I., Adamu, M.O., Anake, T.A. et al. Nature inspired quantile estimates of the Nakagami distribution. Telecommun Syst 72, 517–541 (2019).

Download citation


  • Fading channel
  • Differential evolution
  • Nakagami-m
  • Curve fit
  • Root mean square error
  • Simulation