Joint optimal power allocation for D2D groups and underlaid non-orthogonal multiple access cellular users

Abstract

A novel non-orthogonal multiple access (NOMA) enhanced device-to-device (D2D) communication model with underlaid downlink NOMA cellular network is presented in this paper. Transmitters in each of the D2D groups will be able to communicate with multiple D2D receivers simultaneously via NOMA protocol. Similarly, Base Station also communicates with multiple cellular users (CUs) via NOMA strategy. Power allocation for this hybrid model is investigated in this paper. Optimization problem is formulated as weighted sum rate maximization of the network which allows to prioritize the users in the power allocation process. Rate constraints are imposed on all the receivers in the network in order to meet quality of service requirements. Additional constraints to guarantee successful successive interference cancellation decoding are incorporated. Since the problem is non-convex, an alternate formulation is derived based on difference of convex functions. First, feasibility condition for the existence of solution is derived. Consequently, an iterative procedure based on successive approximation is used to attain optimal power distribution. We show that the proposed power allocation algorithm is convergent and attains optimal performance. Furthermore, simulation results reveal that NOMA enhanced D2D communication with underlaid NOMA cellular network achieves higher network sum rate than the scheme where CUs are scheduled based on orthogonal multiple access protocol.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    Dai, L., Wang, B., Yuan, Y., Han, S., Chih-Lin, I., & Wang, Z. (2015). Non-orthogonal multiple access for 5G: Solutions, challenges, opportunities, and future research trends. IEEE Communications Magazine, 53(9), 74–81.

    Article  Google Scholar 

  2. 2.

    Satio, Y., Kishiyama, Y., Benjebbour, A., Nakamura, T., Li, A., & Higuchi, K. (2013). Non-orthogonal multiple access (NOMA) for cellular radio access. In IEEE vehicular technology conference (pp. 1–5).

  3. 3.

    Wang, C. L., Chen, J. Y., & Chen, Y. J. (2016). Power allocation for a downlink non-orthogonal multiple access system. IEEE Wireless Communications Letters, 5(5), 532–535.

    Article  Google Scholar 

  4. 4.

    Timotheou, S., & Krikidis, I. (2015). Fairness for non-orthogonal multiple access in 5G systems. IEEE Signal Processing Letters, 22(10), 1647–1651.

    Article  Google Scholar 

  5. 5.

    Choi, J. (2016). Power allocation for max-sum rate and max–min rate proportional fairness in NOMA. IEEE Communications Letters, 20(10), 2055–2058.

    Article  Google Scholar 

  6. 6.

    Wang, C.-L., Chen, J.-Y., & Chen, Y.-J. (2016). Power allocation for a downlink non-orthogonal multiple access system. IEEE Wireless Communications Letters, 5(5), 532–535.

    Article  Google Scholar 

  7. 7.

    Parida, P., & Das, S. S. (2014). Power allocation in OFDM based NOMA systems: A DC programming approach. In IEEE globecom workshops (pp. 1026–1031).

  8. 8.

    Di, B., Song, L., & Li, Y. (2016). Sub-channel assignment power allocation and user scheduling for non-orthogonal multiple access networks. IEEE Transactions on Wireless Communications, 15(11), 7686–7698.

    Article  Google Scholar 

  9. 9.

    Nain, G., Das, S. S., & Chatterjee, A. (2018). Low complexity user selection with optimal power allocation in downlink NOMA. IEEE Wireless Communications Letters, 7(2), 158–161.

    Article  Google Scholar 

  10. 10.

    Hanif, M. F., Ding, Z., Ratnarajah, T., & Karagiannidis, G. K. (2016). A minorization-maximization method for optimizing sum rate in the downlink of non-orthogonal multiple access systems. IEEE Transactions on Signal Processing, 64(1), 76–88.

    Article  Google Scholar 

  11. 11.

    Sun, Y., Ng, D. W. K., Ding, Z., & Schober, R. (2017). Optimal joint power and subcarrier allocation for full-duplex multicarrier non-orthogonal multiple access systems. IEEE Transactions on Communications, 65(3), 1077–1091.

    Article  Google Scholar 

  12. 12.

    Wang, J., Peng, Q., Huang, Y., Wang, H. M., & You, X. (2017). Convexity of weighted sum rate maximization in NOMA systema. IEEE Signal Processing Letters, 24(9), 1323–1327.

    Article  Google Scholar 

  13. 13.

    Zhu, J., Wang, J., Huang, Y., He, S., You, X., & Yang, L. (2017). On optimal power allocation for downlink non-orthogonal multiple access systems. IEEE Journal of Selected Areas in Communications, 35(12), 2744–2757.

    Google Scholar 

  14. 14.

    Yang, Z., Xu, W., Pan, C., Pan, Y., & Chen, M. (2017). On the optimality of power allocation for NOMA downlinks with individual QoS constraints. IEEE Communications Letters, 21(7), 1649–1652.

    Article  Google Scholar 

  15. 15.

    Yang, Z., Xu, W., & Li, Y. (2017). Fair non-orthogonal multiple access for visible light communication downlinks. IEEE Wireless Communications Letters, 6(1), 66–69.

    Google Scholar 

  16. 16.

    Fang, F., Zhang, H., Cheng, J., & Leung, V. C. (2016). Energy-efficient resource allocation for downlink non-orthogonal multiple access network. IEEE Transactions on Communications, 64(9), 3722–3732.

    Article  Google Scholar 

  17. 17.

    Zhang, Y., Wang, H.-M., Zheng, T.-X., & Yang, Q. (2017). Energy-efficient transmission design in non-orthogonal multiple access. IEEE Transactions on Vehicular Technology, 66(3), 2852–2857.

    Article  Google Scholar 

  18. 18.

    Cui, J., Ding, Z., & Fan, P. (2016). A novel power allocation scheme under outage constraints in NOMA systems. IEEE Signal Processing Letters, 23(9), 1226–1230.

    Article  Google Scholar 

  19. 19.

    He, B., Liu, A., Yang, N., & Lau, V. K. N. (2017). On the design of secure non-orthogonal multiple access systems. IEEE Journal of Selected Areas in Communications, 35(10), 2196–2206.

    Article  Google Scholar 

  20. 20.

    Wang, Z., Jiang, L., & He, C. (2014). Optimal price-based power control algorithm in cognitive radio networks. IEEE Transactions on Wireless Communications, 13(11), 5909–5920.

    Article  Google Scholar 

  21. 21.

    Li, C., Zhang, Q., Li, Q., & Qin, J. (2016). Price-based power allocation for non-orthogonal multiple access systems. IEEE Wireless Communications Letters, 5(6), 664–667.

  22. 22.

    Wang, Z., Jiang, L., & He, C. (2018). A novel price-based power allocation algorithm in non-orthogonal multiple access networks. IEEE Communications Letters, 7(2), 230–233.

    Article  Google Scholar 

  23. 23.

    Gandotra, P., Jha, R. K., & Jain, S. (2018). Sector-based radio resource allocation (SBRRA) algorithm for better quality of service and experience in device-to-device (D2D) communication. IEEE Transactions on Vehicular Technology, 67(7), 5750–5765.

    Article  Google Scholar 

  24. 24.

    Gandotra, P., Jha, R. K., & Jain, S. (2017). A survey on device-to-device (D2D) communication: Architecture and security issues. Journal of Network and Computer Applications, 78, 9–29.

    Article  Google Scholar 

  25. 25.

    Zhao, J., Liu, Y., Chai, K. K., Chen, Y., & Elkashlan, M. (2017). Joint subchannel and power allocation for NOMA enhanced D2D communications. IEEE Transactions on Communications, 65(11), 5081–5094.

    Article  Google Scholar 

  26. 26.

    Zhao, J., Liu, Y., Chai, K. K., Chen, Y., Elkashlan, M., & Alonso-Zarate, J. (2016). NOMA-based D2D communications: Towards 5G. In IEEE global communications conference (pp. 1–6).

  27. 27.

    Pan, Y., Pan, C., Yang, Z., & Chen, M. (2018). Resource allocation for D2D communications underlaying a NOMA-based cellular network. IEEE Wireless Communications Letters, 7(1), 130–133.

    Article  Google Scholar 

  28. 28.

    Ahsan Kazmi, S. M., Tran, N. H., Ho, T. M., Manzoor, A., Niyato, D., & Hong, C. S. (2018). Coordinated device-to-device communication with non-orthogonal multiple access in future wireless cellular networks. IEEE Access, 6, 39860–39875.

    Article  Google Scholar 

  29. 29.

    Madani, N., & Sodagari, S. (2018). Performance analysis of non-orthogonal multiple access with underlaid device-to-device communications. IEEE Access, 6, 39820–39826.

    Article  Google Scholar 

  30. 30.

    Pei, L., Yang, Z., Pan, C., Huang, W., Chen, M., Elkashlan, M., et al. (2018). Energy-eficient D2D communications underlaying NOMA-based networks with energy harvesting. IEEE Communications Letters, 22(5), 914–917.

    Article  Google Scholar 

  31. 31.

    Boyd, S., & Vandenberhe, L. (2004). Convex optimization. Cambridge: Cambridge University Press.

    Google Scholar 

  32. 32.

    Yang, Z., Pan, C., Xu, W., Pan, Y., Chen, M., & Elkashlan, M. (2018). Power control for multi-cell networks with non-orthogonal multiple access. IEEE Transactions on Wireless Communications, 17(2), 927–941.

    Article  Google Scholar 

  33. 33.

    You, L., Yuan, D., Lei, L., Sun, S., Chatzinotas, S., & Ottersten, B. (2018). Resource optimization with load coupling in multi-cell NOMA. IEEE Transactions on Wireless Communications, 17(7), 4735–4749.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Centre for Engineering Research and Development (CERD) of APJ Abdul Kalam Technological University under the Ph.D. Fellowship D-KKE16JUL001.

Author information

Affiliations

Authors

Corresponding author

Correspondence to P. Sindhu.

Ethics declarations

Conflicts of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sindhu, P., Deepak, K.S. & Abdul Hameed, K.M. Joint optimal power allocation for D2D groups and underlaid non-orthogonal multiple access cellular users. Telecommun Syst 72, 365–375 (2019). https://doi.org/10.1007/s11235-019-00573-9

Download citation

Keywords

  • Cellular user
  • Device-to-device communications
  • Interference management
  • Non-orthogonal multiple access
  • Power allocation
  • Weighted sum rate maximization