Abstract
The question of resource allocation arises whenever demand exceeds supply. The common approach is to optimize the network efficiency while maintaining some fairness among the users. While resource allocation policies use various definitions for network efficiency and fairness, most of them are based on maximization of a utility function. The mathematical formalism underlying these approaches is the same as the mathematical formalism used in the Bernoulli model in finance, where a player is supposed to maximize his expected utility function. This model is disproved by Allais’ paradox, which provides examples of rational behaviors which cannot be described by the maximization of any utility function. By transposing this paradox to telecommunication networks for the purpose of resource allocation, we build examples of rational operators whose optimal choice cannot be described by the maximization of any utility function. By optimizing a trade-off between network efficiency and fairness, we propose a model similar to the risk-return trade-off optimization in finance.
This is a preview of subscription content, access via your institution.











Notes
French francs were originally used in all the paradoxes
References
Allais, M. (1979). The so-called Allais paradox and rational decisions under uncertainty. In M. Allais & O. Hagen (Eds.), Expected utility hypotheses and the Allais paradox (pp. 437–681). Berlin: Springer.
Bertsimas, D., Farias, V. F., & Trichakis, N. (2012). On the efficiency-fairness trade-off. Management Science, 58(12), 2234–2250.
Bodie, Z., Kane, A., & Marcus, A. J. (2011). Investment and portfolio management. Irwin: McGraw-Hill.
Combes, R., Altman, Z., & Altman, E. (2010). On the use of packet scheduling in self-optimization processes: application to coverage-capacity optimization. In Proceedings of the 8th international symposium on modeling and optimization in mobile, ad hoc and wireless networks (WiOpt) (pp. 98–107). IEEE.
Feng, D., Jiang, C., Lim, G., Cimini, L. J., Feng, G., & Li, G. Y. (2013). A survey of energy-efficient wireless communications. IEEE Communications Surveys and Tutorials, 15(1), 167–178.
Fossati, F., Moretti, S., & Secci, S. (2017). A mood value for fair resource allocations. arXiv preprint arXiv:1701.07991.
Hong, M., & Garcia, A. (2012). Mechanism design for base station association and resource allocation in downlink OFDMA network. IEEE Journal on Selected Areas in Communications, 30(11), 2238–2250.
Huaizhou, S., Prasad, R. V., Onur, E., & Niemegeers, I. (2014). Fairness in wireless networks: Issues, measures and challenges. IEEE Communications Surveys and Tutorials, 16(1), 5–24.
Joe-Wong, C., Sen, S., Lan, T., & Chiang, M. (2013). Multiresource allocation: Fairness-efficiency tradeoffs in a unifying framework. IEEE/ACM Transactions on Networking (TON), 21(6), 1785–1798.
Kang, X., Zhang, R., & Motani, M. (2012). Price-based resource allocation for spectrum-sharing femtocell networks: A stackelberg game approach. IEEE Journal on Selected areas in Communications, 30(3), 538–549.
Kelly, F. (1997). Charging and rate control for elastic traffic. European Transactions on Telecommunications, 8(1), 33–37.
Koutsopoulos, I., & Tassiulas, L. (2002). Adaptive resource allocation in SDMA-based wireless broadband networks with OFDM signaling. In Proceedings of the twenty-first annual joint conference of the IEEE computer and communications societies, INFOCOM 2002 (vol. 3, pp. 1376–1385). IEEE.
Lan, T., Kao, D., Chiang, M., & Sabharwal, A. (2010). An axiomatic theory of fairness in network resource allocation. IEEE: Piscataway.
Le, L., & Hossain, E. (2007). Multihop cellular networks: Potential gains, research challenges, and a resource allocation framework. IEEE Communications Magazine, 45(9), 66–73.
Lee, J. W., Mazumdar, R. R., & Shroff, N. B. (2006). Joint resource allocation and base-station assignment for the downlink in CDMA networks. IEEE/ACM Transactions on Networking, 14(1), 1–14.
Li, C., Song, S., Zhang, J., & Letaief, K.B. (2012). Maximizing energy efficiency in wireless networks with a minimum average throughput requirement. In 2012 IEEE wireless communications and networking conference (WCNC) (pp. 1130–1134). IEEE.
Lin, Y., Bao, W., Yu, W., & Liang, B. (2015). Optimizing user association and spectrum allocation in HetNets: A utility perspective. IEEE Journal on Selected Areas in Communications, 33(6), 1025–1039.
Maric, I., Bostjancic, B., & Goldsmith, A. (2011) Resource allocation for constrained backhaul in picocell networks. In Information Theory and Applications Workshop (ITA) (pp. 1–6). IEEE
Markowitz, H. (1952). Portfolio selection. The Journal of Finance, 7(1), 77–91.
Massoulié, L., & Roberts, J.(1999) Bandwidth sharing: Objectives and algorithms. In Proceedings of the eighteenth annual joint conference of the IEEE computer and communications societies, INFOCOM’99IEEE (vol. 3, pp. 1395–1403). IEEE.
Mo, J., & Walrand, J. (2000). Fair end-to-end window-based congestion control. IEEE/ACM Transactions on Networking (ToN), 8(5), 556–567.
Ng, D. W. K., Lo, E. S., & Schober, R. (2013). Energy-efficient resource allocation in OFDMA systems with hybrid energy harvesting base station. IEEE Transactions on Wireless Communications, 12(7), 3412–3427.
Ogryczak, W., Luss, H., Pióro, M., Nace, D., & Tomaszewski, A. (2014). Fair optimization and networks: A survey. Journal of Applied Mathematics, 2014, 612018.
Pujol, F. (2011). Mobile traffic forecasts 2010–2020 and offloading solutions. IDATE Consulting and Research. 15 May.
Rodrigues, E. B., & Casadevall, F. (2011). Control of the trade-off between resource efficiency and user fairness in wireless networks using utility-based adaptive resource allocation. IEEE Communications Magazine, 49(9), 15.
Seong, K., Mohseni, M., & Cioffi, J. M. (2006). Optimal resource allocation for OFDMA downlink systems. In 2006 IEEE international symposium on information theory (pp. 1394–1398). IEEE.
Shannon, C. E. (2001). A mathematical theory of communication. ACM SIGMOBILE Mobile Computing and Communications Review, 5(1), 3–55.
Von Neumann, J., & Morgenstern, O. (2007). Theory of games and economic behavior. Princeton: Princeton University Press.
Ye, Q., Rong, B., Chen, Y., Al-Shalash, M., Caramanis, C., & Andrews, J. G. (2013). User association for load balancing in heterogeneous cellular networks. IEEE Transactions on Wireless Communications, 12(6), 2706–2716.
Yetgin, H., Cheung, K. T. K., El-Hajjar, M., & Hanzo, L. H. (2017). A survey of network lifetime maximization techniques in wireless sensor networks. IEEE Communications Surveys and Tutorials, 19(2), 828–854.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflicts of interest
On behalf of all authors, the corresponding author states that there is no conflict of interest.
Rights and permissions
About this article
Cite this article
Ezran, P., Haddad, Y. & Debbah, M. Allais’ paradox and resource allocation in telecommunication networks. Telecommun Syst 70, 337–348 (2019). https://doi.org/10.1007/s11235-018-0484-7
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11235-018-0484-7