Reanalyzing a simplified Markov model for the low-density P2P wireless sensor and actuator networks

Article

Abstract

Wireless sensor and actuator networks (WSAN) are an important part of the emerging Industrial Internet of Things concept. Providing a computationally simple but relatively accurate analytical quality of service (QoS) model for the wireless communications technology is an essential step in developing distributed adaptive network protocols which try to satisfy the stringent industrial QoS requirements. In this paper, a novel Markov chain analysis and delay model has been proposed for the IEEE802.11-based WSANs applications which improves the accuracy while maintaining simplicity and considering the implicit industrial characteristics. Simulation results prove its superior performance compared with similar works.

Keywords

Wireless sensor and actuator network (WSAN) Industrial Internet of Things (IIoT) Peer-to-Peer (P2P ) network Delay Wireless network Markov chain 

Notes

Acknowledgements

This work has been sponsored by the Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran under the research project contract “A Markov Chain Model for the IEEE802.11-based Wireless Industrial Networks with Periodic Data”.

References

  1. 1.
    Van Kranenburg, R. (2008). The Internet of Things: A critique of ambient technology and the all-seeing network of RFID: Institute of Network Cultures.Google Scholar
  2. 2.
    Da Xu, L., He, W., & Li, S. (2014). Internet of things in industries: A survey. IEEE Transactions on Industrial Informatics, 10(4), 2233–2243.CrossRefGoogle Scholar
  3. 3.
    Li, X., Li, D., Wan, J., Vasilakos, A. V., Lai, C.-F., & Wang, S. (2017). A review of industrial wireless networks in the context of industry 4.0. Wireless Networks, 23(1), 23–41.CrossRefGoogle Scholar
  4. 4.
    IEEE (2016). 802.11-2016—IEEE Standard for Information technology—Telecommunications and information exchange between systems Local and metropolitan area networks—Specific requirements—Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications.Google Scholar
  5. 5.
  6. 6.
    Galloway, B., & Hancke, G. P. (2013). Introduction to industrial control networks. IEEE Communications Surveys & Tutorials, 15(2), 860–880.  https://doi.org/10.1109/SURV.2012.071812.00124.CrossRefGoogle Scholar
  7. 7.
    Maadani, M., & Motamedi, S. A. (2014). A simple and comprehensive saturation packet delay model for wireless industrial networks. Wireless Personal Communications, 77(1), 365–381.  https://doi.org/10.1007/s11277-013-1510-4.CrossRefGoogle Scholar
  8. 8.
    Busson, A., & Chelius, G. (2014). Capacity and interference modeling of CSMA/CA networks using SSI point processes. Telecommunication Systems, 57(1), 25–39.CrossRefGoogle Scholar
  9. 9.
    Lei, L., Zhang, T., Zhou, L., Song, X., & Cai, S. (2017). Saturation throughput analysis of IEEE 802.11 DCF with heterogeneous node transmit powers and capture effect. International Journal of Ad Hoc and Ubiquitous Computing, 26(1), 1–11.CrossRefGoogle Scholar
  10. 10.
    Maadani, M., & Motamedi, S. A. (2011). EDCA delay analysis of spatial diversity in IEEE 802.11-based real-time wireless sensor and actuator networks. In 2011 8th international symposium on wireless communication systems (ISWCS) (pp. 675-679): IEEEGoogle Scholar
  11. 11.
    Yazid, M., Bouallouche-Medjkoune, L., Aïssani, D., Amrouche, N., & Bakli, K. (2014). Analytical analysis of applying packet fragmentation mechanism on both basic and RTS/CTS access methods of the IEEE 802.11 b DCF network under imperfect channel and finite load conditions. Wireless Personal Communications, 77(1), 477–506.CrossRefGoogle Scholar
  12. 12.
    Ghazvini, M., Movahhedinia, N., & Jamshidi, K. (2015). GCW: A game theoretic contention window adjustment approach for IEEE 802.11 WLANs. Wireless Personal Communications, 83(2), 1101–1130.CrossRefGoogle Scholar
  13. 13.
    Patel, P., & Lobiyal, D. K. (2017). An adaptive contention slot selection mechanism for improving the performance of IEEE 802.11 DCF. International Journal of Information and Communication Technology, 10(3), 318–349.CrossRefGoogle Scholar
  14. 14.
    Patel, P., & Lobiyal, D. K. (2015). A simple but effective contention aware and adaptive back-off mechanism for improving the performance of IEEE 802.11 DCF. Wireless Personal Communications, 83(3), 1801–1841.CrossRefGoogle Scholar
  15. 15.
    Choi, J., Byeon, S., Choi, S., & Lee, K. B. (2017). Activity probability-based performance analysis and contention control for IEEE 802.11 WLANs. IEEE Transactions on Mobile Computing, 16(7), 1802–1814.CrossRefGoogle Scholar
  16. 16.
    Karaca, M., Bastani, S., & Landfeldt, B. (2017). Modifying backoff freezing mechanism to optimize dense IEEE 802.11 Networks. IEEE Transactions on Vehicular Technology, 66(10), 9470–9482.CrossRefGoogle Scholar
  17. 17.
    Fitzgerald, E., Körner, U., & Landfeldt, B. (2017). An analytic model for throughput optimal distributed coordination function (TO-DCF). Telecommunication Systems, 66(2), 197–215.CrossRefGoogle Scholar
  18. 18.
    Santos, M. A., Villalón, J. M., & Orozco-Barbosa, L. (2016). Dyn-ARF: A rate adaptation mechanism sensitive to the network load over 802.11 WLANs. Telecommunication Systems, 61(1), 5–19.CrossRefGoogle Scholar
  19. 19.
    Chatzimisios, P., Boucouvalas, A. C., & Vitsas, V. (2005). Performance analysis of the IEEE 802.11 MAC protocol for wireless LANs. International Journal of Communication Systems, 18(6), 545–569.  https://doi.org/10.1002/dac.717.CrossRefGoogle Scholar
  20. 20.
    Raptis, P., Vitsas, V., & Paparrizos, K. (2009). Packet delay metrics for IEEE 802.11 distributed coordination function. Mobile Networks and Applications, 14(6), 772–781.  https://doi.org/10.1007/s11036-008-0124-7.CrossRefGoogle Scholar
  21. 21.
    Maadani, M., & Motamedi, S. A. (2014). A simple and closed-form access delay model for reliable IEEE 802.11-based wireless industrial networks. Wireless Personal Communications, 75(4), 2243–2268.  https://doi.org/10.1007/s11277-013-1465-5.CrossRefGoogle Scholar
  22. 22.
    Wang, C., Lo, H.-K., & Fang, S.-H. (2011). Fairness analysis of throughput and delay in WLAN environments with channel diversities. EURASIP Journal on Wireless Communications and Networking, 2011(1), 42.CrossRefGoogle Scholar
  23. 23.
    Martorell, G., Femenias, G., & Riera-Palou, F. (2015). Non-saturated IEEE 802.11 networks. A hierarchical 3D Markov model. Computer Networks, 80, 27–50.CrossRefGoogle Scholar
  24. 24.
    Misra, S., & Khatua, M. (2017). Packet-centric tradeoff and unfair success region in IEEE 802.11 WLANs. IEEE Transactions on Vehicular Technology, 66(5), 4223–4230.Google Scholar
  25. 25.
    Maadani, M., & Motamedi, S. A. (2014). Saturated distributed coordination function Markov model for noisy soft-real-time industrial wireless networks. IET Communication Systems, 8(10), 1724–1735.CrossRefGoogle Scholar
  26. 26.
    Maadani, M., & Motamedi, S. A. (2016). A comprehensive DCF performance analysis in noisy industrial wireless networks. International Journal of Communication Systems, 29(11), 1720–1739.  https://doi.org/10.1002/dac.2904.CrossRefGoogle Scholar
  27. 27.
    Graham, C. (2014). Markov chains: Analytic and Monte Carlo computations. New York: Wiley.CrossRefGoogle Scholar
  28. 28.
    Mason, R. W., & Heikes, C. A. (1993). Common format for encoding both single and double precision floating point numbers. Google Patents.Google Scholar
  29. 29.
    Cavin, D., Sasson, Y., & Schiper, A. (2002). On the accuracy of MANET simulators. In Proceedings of the second ACM international workshop on principles of mobile computing (pp. 38–43). ACM.Google Scholar
  30. 30.
    Ivanov, S., Herms, A., & Lukas, G. (2007). Experimental validation of the ns-2 wireless model using simulation, emulation, and real network. In 2007 ITG-GI conference on communication in distributed systems (KiVS) (pp. 1–12). VDEGoogle Scholar
  31. 31.
    Lucio, G. F., Paredes-Farrera, M., Jammeh, E., Fleury, M., & Reed, M. J. (2003). Opnet modeler and ns-2: Comparing the accuracy of network simulators for packet-level analysis using a network testbed. WSEAS Transactions on Computers, 2(3), 700–707.Google Scholar
  32. 32.
    Garrido, P. P., Malumbres, M. P., & Calafate, C. T. (2008). ns-2 versus OPNET: A comparative study of the IEEE 802.11 e technology on MANET environments. In Proceedings of the 1st international conference on Simulation tools and techniques for communications, networks and systems & workshops (pp. 37). ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Electrical Engineering, Shahr-e-Qods BranchIslamic Azad UniversityTehranIran

Personalised recommendations