Skip to main content

Accurate compressive data gathering in wireless sensor networks using weighted spatio-temporal compressive sensing

Abstract

The high number of transmissions in sensor nodes having a limited amount of energy leads to a drastic decrease in the lifetime of wireless sensor networks. For dense sensor networks, the provided data potentially have spatial and temporal correlations. The correlations between the data of the nodes make it possible to utilize compressive sensing theory during the data gathering phase; however, applying this technique leads to some errors during the reconstruction phase. In this paper, a method based on weighted spatial-temporal compressive sensing is proposed to improve the accuracy of the reconstructed data. Simulation results confirm that the reconstruction error of the proposed method is approximately 16 times less than the closest compared method. It should be noted that due to applying weighted spatial-temporal compressive sensing, some extra transmissions are posed to the network. However, considering both lifetime and accuracy factors as a compound metric, the proposed method yields a 12% improvement compared to the closest method in the literature.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

References

  1. Yick, J., Mukherjee, B., & Ghosal, D. (2008). Wireless sensor network survey. Computer Networks, 52(12), 2292–2330.

    Article  Google Scholar 

  2. Anastasi, G., Conti, M., Di Francesco, M., & Passarella, A. (2009). Energy conservation in wireless sensor networks: A survey. Ad Hoc Networks, 7(3), 537–568.

    Article  Google Scholar 

  3. Akyildiz, I. F., Vuran, M. C., & Akan, O. B. (2004). On exploiting spatial and temporal correlation in wireless sensor networks. Proceedings of WiOpt, 4, 71–80.

    Google Scholar 

  4. Donoho, D. L. (2006). Compressed sensing. IEEE Transactions on Information Theory, 52(4), 1289–1306.

    Article  Google Scholar 

  5. Baraniuk, R. G. (2007). Compressive sensing. IEEE Signal Processing Magazine, 24(4), 118–121.

    Article  Google Scholar 

  6. Candès, E. J., & Wakin, M. B. (2008). An introduction to compressive sampling. IEEE Signal Processing Magazine, 25(2), 21–30.

    Article  Google Scholar 

  7. Yao, Y., Cao, Q., & Vasilakos, A. V. (2015). EDAL: An energy-efficient, delay-aware, and lifetime-balancing data collection protocol for heterogeneous wireless sensor networks. IEEE/ACM Transactions on Networking, 23(3), 810–823.

    Article  Google Scholar 

  8. Yildiz, H. U., & Tavli, B. (2015). Prolonging wireless sensor network lifetime by optimal utilization of compressive sensing. In 2015 IEEE globecom workshops (GC Wkshps) (pp. 1–6). IEEE.

  9. Zhu, L., Ci, B., Liu, Y., & Chen, Z. D. (2015). Data gathering in wireless sensor networks based on reshuffling cluster compressed sensing. International Journal of Distributed Sensor Networks, 2015, 220.

    Google Scholar 

  10. Liu, X.-Y., et al. (2015). CDC: Compressive data collection for wireless sensor networks. IEEE Transactions on Parallel and Distributed Systems, 26(8), 2188–2197.

    Article  Google Scholar 

  11. Nguyen, M. T. (2013). Minimizing energy consumption in random walk routing for wireless sensor networks utilizing compressed sensing. In 2013 8th international conference on system of systems engineering (SoSE) (pp. 297–301). IEEE.

  12. Harmany, Z. T., Marcia, R. F., & Willett, R. M. (2011). Spatio-temporal compressed sensing with coded apertures and keyed exposures. arXiv preprint arXiv:1111.7247.

  13. Yip, E., et al. (2014). Prior data assisted compressed sensing: A novel MR imaging strategy for real time tracking of lung tumors. Medical Physics, 41(8), 082301.

    Article  Google Scholar 

  14. Samsonov, A., Velikina, J., Fleming, J., Schiebler, M., & Field, A. (2010). Accelerated serial MR imaging in multiple sclerosis using baseline scan information. In 18th annual meeting of ISMRM, Stockholm, Sweden (p. 4876). Berkeley, CA: International Society for Magnetic Resonance in Medicine.

  15. Vaswani, N., & Lu, W. (2010). Modified-CS: Modifying compressive sensing for problems with partially known support. IEEE Transactions on Signal Processing, 58(9), 4595–4607.

    Article  Google Scholar 

  16. Khajehnejad, M. A., Xu, W., Avestimehr, A. S., Hassibi, B. (2009). Weighted \(\ell \) 1 minimization for sparse recovery with prior information. In 2009 IEEE international symposium on information theory (pp. 483–487). IEEE.

  17. Friedlander, M. P., Mansour, H., Saab, R., & Yilmaz, O. (2012). Recovering compressively sampled signals using partial support information. IEEE Transactions on Information Theory, 58(2), 1122–1134.

    Article  Google Scholar 

  18. Luo, C., Wu, F., Sun, J., Chen, C. W. (2009). Compressive data gathering for large-scale wireless sensor networks. In Proceedings of the 15th annual international conference on mobile computing and networking (pp. 145–156). ACM.

  19. Kalpakis, K., Dasgupta, K., & Namjoshi, P. (2003). Efficient algorithms for maximum lifetime data gathering and aggregation in wireless sensor networks. Computer Networks, 42(6), 697–716.

    Article  Google Scholar 

  20. Althunibat, S., Abu-Al-Aish, A., Shehab, W. F. A., & Alsawalmeh, W. H. (2016). Auction-based data gathering scheme for wireless sensor networks. IEEE Communications Letters, 20(6), 1223–1226.

    Article  Google Scholar 

  21. Zhang, Y., He, S., & Chen, J. (2016). Data gathering optimization by dynamic sensing and routing in rechargeable sensor networks. IEEE/ACM Transactions on Networking, 24(3), 1632–1646.

    Article  Google Scholar 

  22. Chen, S., Wu, M., Wang, K., Sun, Z., & Lu, W. (2015). Combining network coding and compressed sensing for error correction in wireless sensor networks. International Journal of Communication Systems, 28(7), 1303–1315.

    Article  Google Scholar 

  23. Chou, C. T., Rana, R., Hu, W. (2009). Energy efficient information collection in wireless sensor networks using adaptive compressive sensing. In IEEE 34th conference on local computer networks, 2009. LCN 2009 (pp. 443–450). IEEE.

  24. Liu, Z., Zhang, M., & Cui, J. (2014). An adaptive data collection algorithm based on a Bayesian compressed sensing framework. Sensors, 14(5), 8330–8349.

    Article  Google Scholar 

  25. Quer, G., Masiero, R., Munaretto, D., Rossi, M., Widmer, J., Zorzi, M. (2009). On the interplay between routing and signal representation for compressive sensing in wireless sensor networks. In Information theory and applications workshop (ITA 2009) (pp. 206–215).

  26. Chen, S., Zhao, C., Wu, M., Sun, Z., & Jin, J. (2015). Clustered spatio-temporal compression design for wireless sensor networks. In 2015 24th international conference on computer communication and networks (ICCCN) (pp. 1–6). IEEE.

  27. Quan, L., Xiao, S., Xue, X., & Lu, C. (2016). Neighbor-aided spatial-temporal compressive data gathering in wireless sensor networks. IEEE Communications Letters, 20(3), 578–581.

    Article  Google Scholar 

  28. Mahmudimanesh, M., Khelil, A., & Suri, N. (2012). Balanced spatio-temporal compressive sensing for multi-hop wireless sensor networks. In 2012 IEEE 9th international conference on mobile adhoc and sensor systems (MASS) (pp. 389–397). IEEE.

  29. Zonoobi, D., & Kassim, A. A. (2012). Weighted-CS for reconstruction of highly under-sampled dynamic MRI sequences. In Signal & information processing association annual summit and conference (APSIPA ASC), 2012 Asia-Pacific (pp. 1–5). IEEE.

  30. Chen, H., Ma, X., Zhang, Y., Tang, W. (2010). An iterative weighing algorithm for image reconstruction in compressive sensing. In 2010 first international conference on pervasive computing signal processing and applications (PCSPA) (pp. 1091–1094). IEEE.

  31. Weizman, L., Eldar, Y. C., & Bashat, D. B. (2015). Compressed sensing for longitudinal MRI: An adaptive-weighted approach. Medical Physics, 42(9), 5195–5208.

    Article  Google Scholar 

  32. Zheng, H., Yang, F., Tian, X., Gan, X., Wang, X., & Xiao, S. (2015). Data gathering with compressive sensing in wireless sensor networks: A random walk based approach. IEEE Transactions on Parallel and Distributed Systems, 26(1), 35–44.

    Article  Google Scholar 

  33. Grant, M., & Boyd, S. (2014). CVX: Matlab software for disciplined convex programming. http://cvxr.com/cvx/.

  34. National Center for Atmospheric Research Staff. (2013). The climate data guide: SST (AMSR-E): Sea surface temperature from remote sensing systems. https://climatedataguide.ucar.edu/guidance/sst-amsr-e-sea-surface-temperature-remotesensing-systems.

  35. Heinzelman, W. R., Chandrakasan, A., & Balakrishnan, H. (2000). Energy-efficient communication protocol for wireless microsensor networks. In Proceedings of the 33rd annual Hawaii international conference on system sciences (Vol. 2, p. 10). IEEE.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farshad Khunjush.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mehrjoo, S., Khunjush, F. Accurate compressive data gathering in wireless sensor networks using weighted spatio-temporal compressive sensing. Telecommun Syst 68, 79–88 (2018). https://doi.org/10.1007/s11235-017-0376-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-017-0376-2

Keywords

  • Accuracy
  • Compressive sensing
  • Lifetime
  • Wireless sensor networks