Advertisement

Telecommunication Systems

, Volume 65, Issue 2, pp 331–337 | Cite as

Model of input impedance of a circular-loop antenna

  • Yan Yang
  • Yida Zeng
  • Qixing Chen
Article
  • 255 Downloads

Abstract

This paper proposes a novel model of the input impedance of a circular-loop antenna based on wave equations. A circular-loop antenna is equivalent to uniform parallel double wires with losses and a short circuit load. The characteristic impedance, the propagation coefficient and the inductance, capacitance and resistance per unit length of the uniform parallel double wires with losses can first be expressed as closed solutions, and the mathematical model of the input impedance of the circular-loop antenna can then be derived naturally from the wave equations. Comparison of the data curve from this model with curves from simulations and experiments show that they are similar; however, some discrepancies are observed, and are attributed to the estimation error of the radiation resistance of the circular-loop antenna. As long as the circular-loop antenna is made from an isotropic material and its size remains uniform, the equivalent method is valid electrically for both small- and large-sized circular-loop antennas.

Keywords

Circular-loop antenna Input impedance Characteristic impedance Parallel double wire Uniform transmission wire Wave equations 

References

  1. 1.
    Keil, B. & Kilian, T. (2000). Developing an automatic inductive fuze setter for crusader. Proceedings of 44th Annual Fuze Conference.Google Scholar
  2. 2.
    Yu, B., Kim, S.-J., & Jung, B. (2007). RFID tag antenna using two-shorted microstrip patches mountable on metallic objects. Microwave and Optical Technology Letters, 49(2), 414–416.CrossRefGoogle Scholar
  3. 3.
    Gheethan, A. A., Herzig, P. A., & Gokhan, M. (2013). Compact 2 x 2 coupled double loop GPS antenna array loaded with broadside coupled split ring resonators. IEEE Transactions on Antenna and Propagation, 61(6), 3000–3008.CrossRefGoogle Scholar
  4. 4.
    Winters, J. H. (1998). Smart antennas for wireless systems. IEEE Personal Communication, 5(1), 23–27.CrossRefGoogle Scholar
  5. 5.
    Chi, Y.-W., & Wong, K.-L. (2008). Compact multiband folded loop chip antenna for small-size mobile phone. IEEE Transactions on Antenna and Propagation, 56(12), 3797–3803.CrossRefGoogle Scholar
  6. 6.
    Chi, Y.-W., & Wong, K.-L. (2009). Quarter-wavelength printed loop antenna with an internal printed matching circuit for GSM/DCS/PCS/UMTS operation in the mobile phone. IEEE Transactions on Antenna and Propagation, 57(9), 2541–2547.CrossRefGoogle Scholar
  7. 7.
    Wong, K.-L., & Huang, C.-H. (2008). Printed loop antenna with a perpendicular feed for penta-band mobile phone application. IEEE Transactions on Antenna and Propagation, 56(7), 2138–2141.CrossRefGoogle Scholar
  8. 8.
    Yaghjian, A. D., & Best, S. R. (2005). Impedance, bandwidth, and Q of antennas. IEEE Transactions on Antenna and Propagation, 53(4), 1298–1324.CrossRefGoogle Scholar
  9. 9.
    Mosallaei, H., & Sarabandi, K. (2007). Design and modeling of patch antenna printed on magneto-dielectric embedded-circuit metasubstrate. IEEE Transactions on Antenna and Propagation, 55(1), 45–52.CrossRefGoogle Scholar
  10. 10.
    Chi, Y.-W., & Wong, K.-L. (2007). Internal compact dual-band printed loop antenna for mobile phone application. IEEE Transactions on Antenna and Propagation, 55(5), 1458–1462.CrossRefGoogle Scholar
  11. 11.
    Su, S.-W. (2014). Compact four-loop-antenna system for concurrent, 2.4-and 5-GHz WLAN operation. Microwave and Optical Technology Letters, 56(1), 208–215.CrossRefGoogle Scholar
  12. 12.
    Chi, Y.-W., & Wong, K.-L. (2008). Compact multiband folded loop chip antenna for small-size mobile phone. IEEE Transactions on Antenna and Propagation, 56(12), 3797–3803.CrossRefGoogle Scholar
  13. 13.
    Chi, Y.-W., & Wong, K.-L. (2009). Quarter-wavelength printed loop antenna with an internal printed matching circuit for GSM/DCS/PCS/UMTS operation in the mobile phone. IEEE Transactions on Antenna and Propagation, 57(9), 2541–2547.CrossRefGoogle Scholar
  14. 14.
    Chi, Y.-W., & Wong, K.-L. (2009). Very-small-size printed loop antenna for GSM/ /DCS/PCS/UMTS operation in the mobile phone. Microwave and Optical Technology Letters, 51(1), 184–192.CrossRefGoogle Scholar
  15. 15.
    Chi, Y.-W., & Wong, K.-L. (2007). Internal compact dual-band printed loop antenna for mobile phone application. IEEE Transactions on Antenna and Propagation, 55(5), 1457–1462.CrossRefGoogle Scholar
  16. 16.
    Wong, K.-L., Chen, W.-Y., & Kang, T.-W. (2011). On-board printed coupled-fed loop antenna in close proximity to the surrounding ground plane for penta-band WWAN mobile phone. IEEE Transactions on Antenna and Propagation, 59(3), 751–757.CrossRefGoogle Scholar
  17. 17.
    Xing, Z. J., Zhang, Z. L., Wei, K., & Xu, J. D. (2014). One terminal improving method of open-circuit near-field antenna of UHF RFID system. Journal of Electromagnetic Waves and Application, 28(3), 306–315.CrossRefGoogle Scholar
  18. 18.
    Wong, K.-L., & Chen, M.-T. (2013). Small-size LTE/WWAN printed loop antenna with an inductively coupled branch strip for bandwidth enhancement in the tablet computer. IEEE Transactions on Antenna and Propagation, 61(12), 6144–6151.CrossRefGoogle Scholar
  19. 19.
    Noguchi, A., & Hiroyuki, A. (2013). Small loop antenna and rectenna for RF energy harvesting in FM bands. IEICE Transaction on Electronics, E96C(10), 1319–1321.CrossRefGoogle Scholar
  20. 20.
    Liu, Y., Kim, H.-H., & Kim, H. (2013). Loop-type ground radiation antenna for dual-band WLAN applications. IEEE Transactions on Antenna and Propagation, 61(9), 4819–4823.CrossRefGoogle Scholar
  21. 21.
    Hamed, S. M. A., & Bashir, S. O. (2013). New fields expressions of a traveling wave circular loop antenna. 2013 International Conference on Computing, Electrical and Electronic Engineering (ICCEEE) (pp. 300–305).Google Scholar
  22. 22.
    Jensen, M. A., & Rahmat-Samii, Y. (1994). Performance analysis of antennas for hand-held transceivers using FDTD. IEEE Transactions on Antenna and Propagation, 42(8), 1106–1113.CrossRefGoogle Scholar
  23. 23.
    Tretyakov, S. A., Mariotte, F., & Simovski, C. R. (1996). Analytical antenna model for chiral scatterers: Comparison with numerical and experimental data. IEEE Transactions on Antenna and Propagation, 44(7), 1006–1014.CrossRefGoogle Scholar
  24. 24.
    Werner, D. H. (1996). An exact integration procedure for vector potentials of thin circular loop antennas. IEEE Transactions on Antenna and Propagation, 44(2), 157–165.CrossRefGoogle Scholar
  25. 25.
    Hamed, S. M. A. (2013). Exact field expressions for circular loop antennas using spherical functions expansion. IEEE Transactions on Antenna and Propagation, 61(6), 2956–2963.CrossRefGoogle Scholar
  26. 26.
    Hamed, S. M. A., & Bashir, S. O. (2013). Characteristics of a circular loop antenna in the presence of a coaxial conducting BOR attached to a planar reflector. IEEE Antennas and Wireless Propagation Letters, 12, 793–796.CrossRefGoogle Scholar
  27. 27.
    Chi, Y.-W., & Wong, K.-L. (2009). Very-small-size folded loop antenna with a band-stop matching circuit for WWAN operation in the mobile phone. Microwave and Optical Technology Letters, 51(3), 808–814.CrossRefGoogle Scholar
  28. 28.
    Hamed, S. M. A. (2013). Exact field expressions for circular loop antennas using spherical functions expansion. IEEE Transactions on Antenna and Propagation, 61(6), 2956–2963.CrossRefGoogle Scholar
  29. 29.
    Song, Z., Zhang, J., & Huang, Z. (2011). Antenna and propagation. Xian: Xi’an Electronic and Science University Press.Google Scholar
  30. 30.
    Wolff, E. A., & Kaul, R. (1998). Microwave engineering and systems applications. New York: Wiley.Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.College of Electrical EngineeringSouthwest Jiaotong UniversityChengduChina
  2. 2.College of Telecommunication EngineeringChengdu University of Information TechnologyChengduChina

Personalised recommendations