Skip to main content
Log in

Adaptive mean queue size and its rate of change: queue management with random dropping

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

The random early detection active queue management (AQM) scheme uses the average queue size to calculate the dropping probability in terms of minimum and maximum thresholds. The effect of heavy load enhances the frequency of crossing the maximum threshold value resulting in frequent dropping of the packets. An adaptive queue management with random dropping algorithm is proposed which incorporates information not just about the average queue size but also the rate of change of the same. Introducing an adaptively changing threshold level that falls in between lower and upper thresholds, our algorithm demonstrates that these additional features significantly improve the system performance in terms of throughput, average queue size, utilization and queuing delay in relation to the existing AQM algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Floyd, S., & Jacobson, V. (1993). Random early detection gateways for congestion avoidance. IEEE/ACM Transactions on Networking, 1(4), 397–413.

    Article  Google Scholar 

  2. Athuraliya, S., Li, V. H., Low, S. H., & Elissa, Q. Y. (2002). REM: Active queue management. IEEE Network, 15(3), 48–53.

    Article  Google Scholar 

  3. Feng, W., Shin, K. G., Kandlur, D. D., & Saha, D. (2002). The BLUE active queue management algorithms. IEEE/ACM Transactions on Networking, 10(4), 513–528.

    Article  Google Scholar 

  4. Meckenney, P. E. (1990). Stochastic fair queuing. In Proceedings of IEEE INFOCOM (pp. 733–740, Vol. 2).

  5. Floyd, S., Gummadi, R., & Shenker, S. (2001). Adaptive RED: An algorithm for increasing the robustness of RED’s active queue management. Berkeley, CA. http://www.icir.org/floyd/papers.html.

  6. May, M., Bolot, J., Diot, C., & Lyles, B. (1999). Reasons not to deploy RED. In Proceedings of IWQoS (pp. 260–262)

  7. Wang, H., & Shin, K.G. (1999). Refined design of random early detection gateways. In Proceedings of IEEE GLOBECOM (pp. 769–775).

  8. Feng, G., Agarwal, A. K., Jayaraman, A., & Siew, C. K. (2004). Modified RED gateways under bursty traffic. IEEE Communications Letters, 8(5), 323–325.

    Article  Google Scholar 

  9. Low, S. H., Paganini, F., Wang, J., & Doyle, J. C. (2003). Linear stability of TCP/RED and a scalable control. Computer Networks, 43(5), 633–647.

    Article  Google Scholar 

  10. Tan, L., Zhang, W., Peng, G., & Chen, G. (2006). Stability of TCP/RED systems in AQM routers. IEEE Transactions on Automatic Control, 51(8), 1393–1398.

  11. Woo, S., & Kim, K. (2010). Tight upper bound for stability of TCP/RED systems in AQM routers. IEEE Communications Letters, 14(7), 682–684.

    Article  Google Scholar 

  12. Bhatnagar, S., & Patro, R. K. (2009). A proof of convergence of the B-RED and P-RED algorithms for random early detection. IEEE Communications Letters, 13(10), 809–811.

    Article  Google Scholar 

  13. Adams, R. (2013). Active queue management: a survey. IEEE Communations Surveys & Tutorials, 15(3), 1425–1476.

    Article  Google Scholar 

  14. Feng, C. W. , Huang, L. F., Xu, C., & Chang, Y. C. (2015). Congestion control scheme performance analysis based on nonlinear RED, Journal of IEEE Systems, PP(99), (1–8). [Early Access Article].

  15. Hollot, C.V., Misra, V., Towsley, D., & Gong, W. (2001). On designing improved controllers for AQM routers supporting TCP flows. In Proceedings of IEEE INFOCOM (pp. 1726–1734).

  16. Hollot, C. V., Misra, V., Towsley, D., & Gong, W. (2002). Analysis and design of controllers for AQM routers supporting TCP flows. IEEE Transactions on Automatic Control, 47(6), 945–959.

    Article  Google Scholar 

  17. Wu, Y., Min, G., & Yang, L. T. (2013). A network and device aware QoS approach for cloud-based mobile streaming. IEEE Transactions on Multimedia, 15(4), 747–757.

    Article  Google Scholar 

  18. Wang, J., Rong, L., & Liu, Y. (2008). A robust proportional controller for AQM based on optimized second-order system model. Computer Communications, 31(10), 2468–2477.

    Article  Google Scholar 

  19. Chavan, K., Kumar, R. G., Belur, M. N., & Karandikar, A. (2011). Robust active queue management for wireless neyworks. EEE Transactions on Control Systems Technology, 19(6), 1630–1638.

    Article  Google Scholar 

  20. Tse, D., & Viswanath, P. (2005). Fundamentals of wireless communication. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  21. Wu, Y., Min, G., & Yang, L. T. (2013). Performance analysis of hybrid wireless networks under bursty and correlated traffic. EEE Transactions on Vehicular Technology, 62(1), 449–454.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shalabh Bhatnagar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karmeshu, Patel, S. & Bhatnagar, S. Adaptive mean queue size and its rate of change: queue management with random dropping. Telecommun Syst 65, 281–295 (2017). https://doi.org/10.1007/s11235-016-0229-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-016-0229-4

Keywords

Navigation