Telecommunication Systems

, Volume 65, Issue 2, pp 281–295 | Cite as

Adaptive mean queue size and its rate of change: queue management with random dropping

Article

Abstract

The random early detection active queue management (AQM) scheme uses the average queue size to calculate the dropping probability in terms of minimum and maximum thresholds. The effect of heavy load enhances the frequency of crossing the maximum threshold value resulting in frequent dropping of the packets. An adaptive queue management with random dropping algorithm is proposed which incorporates information not just about the average queue size but also the rate of change of the same. Introducing an adaptively changing threshold level that falls in between lower and upper thresholds, our algorithm demonstrates that these additional features significantly improve the system performance in terms of throughput, average queue size, utilization and queuing delay in relation to the existing AQM algorithms.

Keywords

Active queue management (AQM) Rate of change of average queue size Throughput Queuing delay AQMRD Traffic control 

References

  1. 1.
    Floyd, S., & Jacobson, V. (1993). Random early detection gateways for congestion avoidance. IEEE/ACM Transactions on Networking, 1(4), 397–413.CrossRefGoogle Scholar
  2. 2.
    Athuraliya, S., Li, V. H., Low, S. H., & Elissa, Q. Y. (2002). REM: Active queue management. IEEE Network, 15(3), 48–53.CrossRefGoogle Scholar
  3. 3.
    Feng, W., Shin, K. G., Kandlur, D. D., & Saha, D. (2002). The BLUE active queue management algorithms. IEEE/ACM Transactions on Networking, 10(4), 513–528.CrossRefGoogle Scholar
  4. 4.
    Meckenney, P. E. (1990). Stochastic fair queuing. In Proceedings of IEEE INFOCOM (pp. 733–740, Vol. 2).Google Scholar
  5. 5.
    Floyd, S., Gummadi, R., & Shenker, S. (2001). Adaptive RED: An algorithm for increasing the robustness of RED’s active queue management. Berkeley, CA. http://www.icir.org/floyd/papers.html.
  6. 6.
    May, M., Bolot, J., Diot, C., & Lyles, B. (1999). Reasons not to deploy RED. In Proceedings of IWQoS (pp. 260–262)Google Scholar
  7. 7.
    Wang, H., & Shin, K.G. (1999). Refined design of random early detection gateways. In Proceedings of IEEE GLOBECOM (pp. 769–775).Google Scholar
  8. 8.
    Feng, G., Agarwal, A. K., Jayaraman, A., & Siew, C. K. (2004). Modified RED gateways under bursty traffic. IEEE Communications Letters, 8(5), 323–325.CrossRefGoogle Scholar
  9. 9.
    Low, S. H., Paganini, F., Wang, J., & Doyle, J. C. (2003). Linear stability of TCP/RED and a scalable control. Computer Networks, 43(5), 633–647.CrossRefGoogle Scholar
  10. 10.
    Tan, L., Zhang, W., Peng, G., & Chen, G. (2006). Stability of TCP/RED systems in AQM routers. IEEE Transactions on Automatic Control, 51(8), 1393–1398.Google Scholar
  11. 11.
    Woo, S., & Kim, K. (2010). Tight upper bound for stability of TCP/RED systems in AQM routers. IEEE Communications Letters, 14(7), 682–684.CrossRefGoogle Scholar
  12. 12.
    Bhatnagar, S., & Patro, R. K. (2009). A proof of convergence of the B-RED and P-RED algorithms for random early detection. IEEE Communications Letters, 13(10), 809–811.CrossRefGoogle Scholar
  13. 13.
    Adams, R. (2013). Active queue management: a survey. IEEE Communations Surveys & Tutorials, 15(3), 1425–1476.CrossRefGoogle Scholar
  14. 14.
    Feng, C. W. , Huang, L. F., Xu, C., & Chang, Y. C. (2015). Congestion control scheme performance analysis based on nonlinear RED, Journal of IEEE Systems, PP(99), (1–8). [Early Access Article].Google Scholar
  15. 15.
    Hollot, C.V., Misra, V., Towsley, D., & Gong, W. (2001). On designing improved controllers for AQM routers supporting TCP flows. In Proceedings of IEEE INFOCOM (pp. 1726–1734).Google Scholar
  16. 16.
    Hollot, C. V., Misra, V., Towsley, D., & Gong, W. (2002). Analysis and design of controllers for AQM routers supporting TCP flows. IEEE Transactions on Automatic Control, 47(6), 945–959.CrossRefGoogle Scholar
  17. 17.
    Wu, Y., Min, G., & Yang, L. T. (2013). A network and device aware QoS approach for cloud-based mobile streaming. IEEE Transactions on Multimedia, 15(4), 747–757.CrossRefGoogle Scholar
  18. 18.
    Wang, J., Rong, L., & Liu, Y. (2008). A robust proportional controller for AQM based on optimized second-order system model. Computer Communications, 31(10), 2468–2477.CrossRefGoogle Scholar
  19. 19.
    Chavan, K., Kumar, R. G., Belur, M. N., & Karandikar, A. (2011). Robust active queue management for wireless neyworks. EEE Transactions on Control Systems Technology, 19(6), 1630–1638.CrossRefGoogle Scholar
  20. 20.
    Tse, D., & Viswanath, P. (2005). Fundamentals of wireless communication. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  21. 21.
    Wu, Y., Min, G., & Yang, L. T. (2013). Performance analysis of hybrid wireless networks under bursty and correlated traffic. EEE Transactions on Vehicular Technology, 62(1), 449–454.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.School of Computer and Systems SciencesJawaharlal Nehru UniversityNew DelhiIndia
  2. 2.Department of Computer Science and AutomationIndian Institute of ScienceBangaloreIndia

Personalised recommendations